Progress in Short Wavelength Energy-Efficient High-Speed Vertical-Cavity Surface-Emitting Lasers for Data Communication
Abstract
:1. Introduction
2. Energy Efficiency of High-Speed VCSELs
3. Energy-Efficient High-Speed Short-Wavelength VCSELs
3.1. 850 nm VCSELs
3.2. 980 nm and 1060 nm VCSELs
4. Adapt Photon Lifetime of VCSELs to Data Rate
5. Novel Processing Approach for Aperture Formation Improving Heat Conduction and Reducing Series Resistance: The MuHA and MAV Designs
6. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Internet Growth and Trends (Source: Cisco VNI Global IP Traffic Forecast, 2017–2022). Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf (accessed on 9 March 2020).
- Tian, S.-C.; Ahamed, M.; Larisch, G.; Bimberg, D. Novel energy-efficient designs of vertical-cavity surface emitting lasers for the next generations of photonic systems. Jpn. J. Appl. Phys. 2022, 61, SK0801. [Google Scholar] [CrossRef]
- Iga, K. Surface-emitting laser-its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1201–1215. [Google Scholar] [CrossRef]
- Tatum, J.A.; Gazula, D.; Graham, L.A.; Guenter, J.K.; Johnson, R.H.; King, J.; Kocot, C.; Landry, G.D.; Lyubomirsky, I.; MacInnes, A.N.; et al. VCSEL-Based Interconnects for Current and Future Data Centers. J. Light. Technol. 2015, 33, 727–732. [Google Scholar] [CrossRef]
- Mahgerefteh, D.; Thompson, C.; Cole, C.; Denoyer, G.; Nguyen, T.; Lyubomirsky, I.; Kocot, C.; Tatum, J. Techno-Economic Comparison of Silicon Photonics and Multimode VCSELs. J. Light. Technol. 2016, 34, 233–242. [Google Scholar] [CrossRef]
- Moser, P.; Lott, J.A.; Larisch, G.; Bimberg, D. Impact of the Oxide-Aperture Diameter on the Energy Efficiency, Bandwidth, and Temperature Stability of 980-nm VCSELs. J. Light. Technol. 2015, 33, 825–831. [Google Scholar] [CrossRef]
- Eiselt, N.; Griesser, H.; Wei, J.; Hohenleitner, R.; Dochhan, A.; Ortsiefer, M.; Eiselt, M.H.; Neumeyr, C.; Olmos, J.J.V.; Monroy, I.T. Experimental Demonstration of 84 Gb/s PAM-4 Over up to 1.6 km SSMF Using a 20-GHz VCSEL at 1525 nm. J. Light. Technol. 2017, 35, 1342–1349. [Google Scholar] [CrossRef] [Green Version]
- Kuchta, D.M.; Rylyakov, A.V.; Doany, F.E.; Schow, C.L.; Proesel, J.E.; Baks, C.W.; Westbergh, P.; Gustavsson, J.S.; Larsson, A. A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link. IEEE Photonics Technol. Lett. 2015, 27, 577–580. [Google Scholar] [CrossRef]
- Szczerba, K.; Westbergh, P.; Karlsson, M.; Andrekson, P.A.; Larsson, A. 70 Gbps 4-PAM and 56 Gbps 8-PAM Using an 850 nm VCSEL. J. Light. Technol. 2015, 33, 1395–1401. [Google Scholar] [CrossRef] [Green Version]
- Larisch, G.; Rosales, R.; Bimberg, D. Energy-Efficient 50+ Gb/s VCSELs for 200+ Gb/s Optical Interconnects. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1701105. [Google Scholar] [CrossRef]
- Moser, P.; Lott, J.A.; Wolf, P.; Larisch, G.; Li, H.; Ledentsov, N.N.; Bimberg, D. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electron. Lett. 2012, 48, 1292–1294. [Google Scholar] [CrossRef]
- Bimberg, D. Novel VCSEL Designs for the next generation of photonic systems. In Proceedings of the 2021 26th Microoptics Conference (MOC), Shizuoka, Japan, 26–29 September 2021; pp. 1–2. [Google Scholar]
- Moser, P.; Hofmann, W.; Wolf, P.; Lott, J.A.; Larisch, G.; Payusov, A.; Ledentsov, N.N.; Bimberg, D. 81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects. Appl. Phys. Lett. 2011, 98, 231106. [Google Scholar] [CrossRef]
- Moser, P.; Lott, J.A.; Wolf, P.; Larisch, G.; Payusov, A.; Ledentsov, N.N.; Hofmann, W.; Bimberg, D. 99 fJ/(bit ·km) Energy to Data-Distance Ratio at 17 Gb/s Across 1 km of Multimode Optical Fiber With 850-nm Single-Mode VCSELs. IEEE Photonics Technol. Lett. 2012, 24, 19–21. [Google Scholar] [CrossRef]
- Coldren, L.A.; Corzine, S.W.; Mashanovitch, M.L. Diode Lasers and Photonic Integrated Circuits, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Larisch, G.; Moser, P.; Lott, J.A.; Bimberg, D. Impact of Photon Lifetime on the Temperature Stability of 50 Gb/s 980 nm VCSELs. IEEE Photonics Technol. Lett. 2016, 28, 2327–2330. [Google Scholar] [CrossRef]
- Westbergh, P.; Gustavsson, J.S.; Kögel, B.; Haglund, Å.; Larsson, A. Impact of Photon Lifetime on High-Speed VCSEL Performance. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1603–1613. [Google Scholar] [CrossRef]
- Westbergh, P.; Gustavsson, J.S.; Haglund, Å.; Skold, M.; Joel, A.; Larsson, A. High-Speed, Low-Current-Density 850 nm VCSELs. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 694–703. [Google Scholar] [CrossRef]
- Afromowitz, M.A. Thermal conductivity of Ga1−xAlxAs alloys. J. Appl. Phys. 1973, 44, 1292–1294. [Google Scholar] [CrossRef]
- Chang, Y.C.; Wang, C.S.; Johansson, L.A.; Coldren, L.A. High-efficiency, high-speed VCSELs with deep oxidation layers. Electron. Lett. 2006, 42, 1281–1283. [Google Scholar] [CrossRef] [Green Version]
- Babichev, A.; Blokhin, S.; Gladyshev, A.; Karachinsky, L.; Novikov, I.; Blokhin, A.; Bobrov, M.; Maleev, N.; Andryushkin, V.; Kolodeznyi, E.; et al. Single-Mode High-Speed 1550 nm Wafer Fused VCSELs for Narrow WDM Systems. IEEE Photonics Technol. Lett. 2023, 35, 297–300. [Google Scholar] [CrossRef]
- Babichev, A.V.; Karachinsky, L.Y.; Novikov, I.I.; Gladyshev, A.G.; Blokhin, S.A.; Mikhailov, S.; Iakovlev, V.; Sirbu, A.; Stepniak, G.; Chorchos, L.; et al. 6-mW Single-Mode High-Speed 1550-nm Wafer-Fused VCSELs for DWDM Application. IEEE J. Quantum Electron. 2017, 53, 2400808. [Google Scholar] [CrossRef]
- Kapon, E.; Sirbu, A. Power-efficient answer. Nat. Photonics 2009, 3, 27–29. [Google Scholar] [CrossRef]
- Blokhin, S.A.; Babichev, A.V.; Gladyshev, A.G.; Karachinsky, L.Y.; Novikov, I.I.; Blokhin, A.A.; Bobrov, M.A.; Maleev, N.A.; Andryushkin, V.V.; Denisov, D.V.; et al. High Power Single Mode 1300-nm Superlattice Based VCSEL: Impact of the Buried Tunnel Junction Diameter on Performance. IEEE J. Quantum Electron. 2022, 58, 2400115. [Google Scholar] [CrossRef]
- Muller, M.; Hofmann, W.; Grundl, T.; Horn, M.; Wolf, P.; Nagel, R.D.; Ronneberg, E.; Bohm, G.; Bimberg, D.; Amann, M.C. 1550-nm High-Speed Short-Cavity VCSELs. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1158–1166. [Google Scholar] [CrossRef]
- Sirbu, A.; Suruceanu, G.; Iakovlev, V.; Mereuta, A.; Mickovic, Z.; Caliman, A.; Kapon, E. Reliability of 1310 nm Wafer Fused VCSELs. IEEE Photonics Technol. Lett. 2013, 25, 1555–1558. [Google Scholar] [CrossRef]
- Wolf, P.; Moser, P.; Larisch, G.; Hofmann, W.; Bimberg, D. High-Speed and Temperature-Stable, Oxide-Confined 980-nm VCSELs for Optical Interconnects. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1701207. [Google Scholar] [CrossRef]
- Wolf, P.; Moser, P.; Larisch, G.; Li, H.; Lott, J.A.; Bimberg, D. Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat. Electron. Lett. 2013, 49, 666–667. [Google Scholar] [CrossRef]
- Haglund, E.; Westbergh, P.; Gustavsson, J.S.; Haglund, E.P.; Larsson, A.; Geen, M.; Joel, A. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron. Lett. 2015, 51, 1096–1098. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.; Wu, M.K.; Liu, M.; Feng, M.; Holonyak, N. 850 nm Oxide-VCSEL With Low Relative Intensity Noise and 40 Gb/s Error Free Data Transmission. IEEE Photonics Technol. Lett. 2014, 26, 289–292. [Google Scholar] [CrossRef]
- Matsuo, S.; Sato, T.; Takeda, K.; Shinya, A.; Nozaki, K.; Taniyama, H.; Notomi, M.; Hasebe, K.; Kakitsuka, T. Ultralow Operating Energy Electrically Driven Photonic Crystal Lasers. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4900311. [Google Scholar] [CrossRef]
- Li, H.; Wolf, P.; Moser, P.; Larisch, G.; Mutig, A.; Lott, J.A.; Bimberg, D. Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85 degrees C. Electron. Lett. 2014, 50, 103–104. [Google Scholar] [CrossRef]
- Moser, P.; Lott, J.A.; Wolf, P.; Larisch, G.; Li, H.; Bimberg, D. Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85 °C. Electron. Lett. 2014, 50, 1369–1371. [Google Scholar] [CrossRef]
- Simpanen, E.; Gustavsson, J.S.; Haglund, E.; Haglund, E.P.; Larsson, A.; Sorin, W.V.; Mathai, S.; Tan, M.R. 1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate. Electron. Lett. 2017, 53, 869–871. [Google Scholar] [CrossRef]
- Imai, S.; Takaki, K.; Kamiya, S.; Shimizu, H.; Yoshida, J.; Kawakita, Y.; Takagi, T.; Hiraiwa, K.; Shimizu, H.; Suzuki, T.; et al. Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs for “Green” Optical Interconnection. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1614–1620. [Google Scholar] [CrossRef]
- Müller, M.; Wolf, P.; Gründl, T.; Grasse, C.; Rosskopf, J.; Hofmann, W.; Bimberg, D.; Amann, M.C. Energy-efficient 1.3 μm short-cavity VCSELs for 30 Gb/s error-free optical links. In Proceedings of the ISLC 2012 International Semiconductor Laser Conference, San Diego, CA, USA, 7–10 October 2012; pp. 1–2. [Google Scholar]
- Wolf, P.; Li, H.; Caliman, A.; Mereuta, A.; Iakovlev, V.; Sirbu, A.; Kapon, E.; Bimberg, D. Spectral Efficiency and Energy Efficiency of Pulse-Amplitude Modulation Using 1.3 μm Wafer-Fusion VCSELs for Optical Interconnects. ACS Photonics 2017, 4, 2018–2024. [Google Scholar] [CrossRef]
- Spiga, S.; Soenen, W.; Andrejew, A.; Schoke, D.M.; Yin, X.; Bauwelinck, J.; Boehm, G.; Amann, M.C. Single-Mode High-Speed 1.5-μm VCSELs. J. Light. Technol. 2017, 35, 727–733. [Google Scholar] [CrossRef]
- Tatum, J.A.; Landry, G.D.; Gazula, D.; Wade, J.K.; Westbergh, P. VCSEL-Based Optical Transceivers for Future Data Center Applications. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11 March 2018; p. M3F.6. [Google Scholar]
- Feng, M.; Wu, C.; Holonyak, N. Oxide-Confined VCSELs for High-Speed Optical Interconnects. IEEE J. Quantum Electron. 2018, 54, 2400115. [Google Scholar] [CrossRef]
- Chorchos, L.; Ledentsov, N.; Kropp, J.R.; Shchukin, V.A.; Kalosha, V.P.; Lewandowski, A.; Turkiewicz, J.P.; Ledentsov, N.N. Energy Efficient 850 nm VCSEL Based Optical Transmitter and Receiver Link Capable of 80 Gbit/s NRZ Multi-Mode Fiber Data Transmission. J. Light. Technol. 2020, 38, 1747–1752. [Google Scholar] [CrossRef]
- Moser, P.; Lott, J.A.; Bimberg, D. Energy Efficiency of Directly Modulated Oxide-Confined High Bit Rate 850-nm VCSELs for Optical Interconnects. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1702212. [Google Scholar] [CrossRef]
- Li, H.; Wolf, P.; Moser, P.; Larisch, G.; Lott, J.; Bimberg, D. Vertical-cavity surface-emitting lasers for optical interconnects. SPIE Newsroom 2014, 25, 126103. [Google Scholar] [CrossRef]
- Nasu, H. Short-Reach Optical Interconnects Employing High-Density Parallel-Optical Modules. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1337–1346. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Wang, C.S.; Coldren, L.A. High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation. Electron. Lett. 2007, 43, 1022–1023. [Google Scholar] [CrossRef] [Green Version]
- Hatakeyama, H.; Akagawa, T.; Fukatsu, K.; Suzuki, N.; Tokutome, K.; Yashiki, K.; Anan, T.; Tsuji, M. 25 Gbit/s 100 °C operation of highly reliable InGaAs/GaAsP-VCSELs. Electron. Lett. 2009, 45, 45–46. [Google Scholar] [CrossRef]
- Larisch, G.; Tian, S.; Bimberg, D. Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates. Opt. Express 2020, 28, 18931–18937. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wolf, P.; Moser, P.; Larisch, G.; Mutig, A.; Lott, J.A.; Bimberg, D.H. Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs. IEEE J. Quantum Electron. 2014, 50, 613–621. [Google Scholar] [CrossRef]
- Larisch, G.; Tian, S.C.; Bimberg, D. "Radiation Emitter". US 17 327 328, 14 April 2021. [Google Scholar]
- Larisch, G.; Tian, S.C.; Bimberg, D. "Radiation Emitter". EP 21 168 265.3, 14 April 2020. [Google Scholar]
- Larisch, G.; Tian, S.C.; Bimberg, D. "Radiation Emitter". US 17 170 834, 8 February 2021. [Google Scholar]
- Larisch, G.; Tian, S.C.; Bimberg, D. "Radiation Emitter". EP 20 192 355.4, 24 August 2020. [Google Scholar]
- Mansoor, A.; Tian, S.C.; Lindner, J.; Larisch, G.; Bimberg, D. Multi-aperture VCSELs: High power, low resistance, single mode. In Proceedings of the 2021 27th International Semiconductor Laser Conference (ISLC), Potsdam, Germany, 10–14 October 2021; pp. 1–2. [Google Scholar]
- Chua, C.L.; Thornton, R.L.; Treat, D.W. Method and Structure for Eliminating Polarization Instability in Laterally-Oxidized VCSELs. US 6 304 588, 2 September 1999. [Google Scholar]
- Chua, C.L. "Phase Array Oxide-Confined VCSELs". US 7 257 141, 23 July 2003. [Google Scholar]
- Kuchta, D.M.; Rylyakov, A.V.; Schow, C.L.; Proesel, J.E.; Baks, C.; Kocot, C.; Graham, L.; Johnson, R.; Landry, G.; Shaw, E.; et al. A 55Gb/s directly modulated 850nm VCSEL-based optical link. In Proceedings of the IEEE Photonics Conference 2012, Burlingame, CA, USA, 23–27 September 2012; p. 972. [Google Scholar]
- Ledentsov, N., Jr.; Agustin, M.; Chorchos, L.; Kropp, J.-R.; Shchukin, V.; Kalosha, V.; Koepp, M.; Caspar, C.; Turkiewicz, J.; Ledentsov, N. Energy Efficient 850-nm VCSEL Based Optical Transmitter and Receiver Link Capable of 56 Gbit/s NRZ Operation; SPIE: Pontoise, France, 2019; Volume 10938. [Google Scholar]
Group | λ(nm) | BR (Gb/s) | Energy Eff. (fJ/bit) | Oxide Aperture/BTJ (μm) | Year | Refs. |
---|---|---|---|---|---|---|
TUB-VIS | 850 | 25 | EDR 77HBR 56 | 3.5 | 2012 | [11] |
TUB | 850 | 40 | HBR 108 | 4 | 2013 | [28] |
TUB | 850 | 3025 | HBR 85@500 mHBR 100@1000 m | 3 | 2013 | [13] |
CUT | 850 | 50 | HBR 95 | 3.5 | 2015 | [29] |
UIUC | 850 | 40 | EDR 431 | 4 | 2014 | [30] |
NCU | 850 | 34 | EDR 140HBR 107 | 4 | 2013 | [31] |
TUB | 980 | 38 | HBR 177@85 °C | 5.5 | 2014 | [32] |
TUB | 980 | 50 | HBR 302 | 5 | 2014 | [33] |
CUT | 1060 | 50 | HBR 100 | 4 | 2017 | [34] |
Furukawa | 1060 | 25 | HBR 76 | 5 | 2011 | [35] |
TUM-TUB | 1300 | 25 | EDR 270@10 km | 3 | 2012 | [36] |
TUB-EPFL | 1300 | 38 | EDR 797@PAM4 | 6 | 2017 | [37] |
TUM | 1550 | 50 | HBR 130 | 4 | 2017 | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.-C.; Ahamed, M.; Bimberg, D. Progress in Short Wavelength Energy-Efficient High-Speed Vertical-Cavity Surface-Emitting Lasers for Data Communication. Photonics 2023, 10, 410. https://doi.org/10.3390/photonics10040410
Tian S-C, Ahamed M, Bimberg D. Progress in Short Wavelength Energy-Efficient High-Speed Vertical-Cavity Surface-Emitting Lasers for Data Communication. Photonics. 2023; 10(4):410. https://doi.org/10.3390/photonics10040410
Chicago/Turabian StyleTian, Si-Cong, Mansoor Ahamed, and Dieter Bimberg. 2023. "Progress in Short Wavelength Energy-Efficient High-Speed Vertical-Cavity Surface-Emitting Lasers for Data Communication" Photonics 10, no. 4: 410. https://doi.org/10.3390/photonics10040410
APA StyleTian, S. -C., Ahamed, M., & Bimberg, D. (2023). Progress in Short Wavelength Energy-Efficient High-Speed Vertical-Cavity Surface-Emitting Lasers for Data Communication. Photonics, 10(4), 410. https://doi.org/10.3390/photonics10040410