GaN-Based VCSELs with A Monolithic Curved Mirror: Challenges and Prospects
Abstract
:1. Introduction
2. Background of the Cavity with Curved Mirror
3. Design of the Cavity with a Curved Mirror
- R > L, hopefully around 2L;
- L > 10 µm.
4. Blue and Green VCSELs
5. Applications
6. Challenge and Prospects
6.1. Longitudinal Mode Control
6.2. Polarization Control
6.3. Efficiency
6.4. Lineup of Colors
6.5. Comparison between Structures
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Iga, K. Vertical-Cavity Surface-Emitting Laser: Its Conception and Evolution. Jpn. J. Appl. Phys. 2008, 47, 1. [Google Scholar] [CrossRef]
- Koyama, F.; Kinoshita, S.; Iga, K. Room Temperature CW Operation of GaAs Vertical Cavity Surface Emitting Laser. Trans. IEICE Electron. 1988, 71, 1089–1090. [Google Scholar]
- Choquette, K.D.; Schneider, R.P., Jr.; Lear, K.L.; Geib, K.M. Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron. Lett. 1994, 30, 2043. [Google Scholar] [CrossRef]
- Padullaparthi, B.D.; Tatum, J.; Iga, K. VCSEL Industry: Communication and Sensing; Wiley-IEEE Press: Hoboken, NJ, USA, 2021. [Google Scholar]
- Lu, T.-C.; Kao, C.-C.; Kuo, H.-C.; Huang, G.-S.; Wang, S.-C. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Appl. Phys. Lett. 2008, 92, 141102. [Google Scholar] [CrossRef]
- Nam, K.B.; Nakarmi, M.L.; Li, J.; Lin, J.Y.; Jiang, H.X. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl. Phys. Lett. 2003, 83, 878. [Google Scholar] [CrossRef]
- Shibata, K.; Nagasawa, T.; Kobayashi, K.; Watanabe, R.; Tanaka, T.; Takeuchi, T.; Kamiyama, S.; Iwaya, M.; Kamei, T. High-quality n-type conductive Si-doped AlInN/GaN DBRs with hydrogen cleaning. Appl. Phys. Express 2022, 15, 112007. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815. [Google Scholar] [CrossRef]
- Veal, T.D.; McConville, C.F.; Schaff, W.J. (Eds.) Indium Nitride and Related Alloys; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Cosendey, G.; Carlin, J.-F.; Kaufmann, N.A.K.; Butté, R.; Grandjean, N. Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Appl. Phys. Lett. 2011, 98, 181111. [Google Scholar] [CrossRef]
- Palisaitis, J.; Hsiao, C.-L.; Hultman, L.; Birch, J.; Persson, P.O. Direct observation of spinodal decomposition phenomena in InAlN alloys during in-situ STEM heating. Sci. Rep. 2017, 7, 44390. [Google Scholar] [CrossRef]
- Butté, R.; Carlin, J.-F.; Feltin, E.; Gonschorek, M.; Nicolay, S.; Christmann, G.; Simeonov, D.; Castiglia, A.; Dorsaz, J.; Buehlmann, H.J.; et al. Current status of AlInN layers lattice matched to GaN for photonics and electronics. J. Phys. D Appl. Phys. 2007, 40, 6328. [Google Scholar] [CrossRef]
- Dorsaz, J.; Bühlmann, H.-J.; Carlin, J.-F.; Grandjean, N.; Ilegems, M. Selective oxidation of AlInN layers for current confinement in III–nitride devices. Appl. Phys. Lett. 2005, 87, 072102. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Fuutagawa, N.; Izumi, S.; Murayama, M.; Narui, H. Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth. Phys. Status Solidi 2016, 213, 1170–1176. [Google Scholar] [CrossRef]
- Kuramoto, M. High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors. Appl. Sci. 2019, 9, 416. [Google Scholar] [CrossRef]
- Terao, K. Blue and green GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN DBR. In Gallium Nitride Materials and Devices XVI; SPIE: San Francisco, CA, USA, 2021; p. 116860E. [Google Scholar]
- Lee, S.-M. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector. Opt. Express 2015, 23, 11023–11030. [Google Scholar] [CrossRef] [PubMed]
- Elafandy, R.T. Study and Application of Birefringent Nanoporous GaN in the Polarization Control of Blue Vertical-Cavity Surface-Emitting Lasers. ACS Photonics 2021, 8, 1041–1047. [Google Scholar] [CrossRef]
- Soda, H.; Iga, K.-I.; Kitahara, C.; Suematsu, Y. GaInAsP/InP Surface Emitting Injection Lasers. Jpn. J. Appl. Phys. 1979, 18, 2329. [Google Scholar] [CrossRef]
- Higuchi, Y.; Omae, K.; Matsumura, H.; Mukai, T. Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection. Appl. Phys. Express 2008, 1, 121102. [Google Scholar] [CrossRef]
- Mei, Y. A comparative study of thermal characteristics of GaN-based VCSELs with three different typical structures. Semicond. Sci. Technol. 2018, 33, 015016. [Google Scholar] [CrossRef]
- Kogelnik, H.; Li, T. Laser Beams and Resonators. Appl. Opt. 1966, 5, 1550. [Google Scholar] [CrossRef]
- Iga, K.; Kambayashi, T.; Kitahra, C.; Wakao, K.; Moriki, K. GaInNAsP/InP double heterostructure planner LED’s. IEEE Trans. Electron. Devices 1978, 26, 1227–1230. [Google Scholar] [CrossRef]
- Iga, K.; Tokyo Institute of Technology, Yokohama, Japan. Personal communication. November 2022.
- Park, S.-H.; Kim, J.; Jeon, H.; Sakong, T.; Lee, S.-N.; Chae, S.; Park, Y.; Jeong, C.-H.; Yeom, G.-Y.; Cho, Y.-H. Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme. Appl. Phys. Lett. 2003, 83, 2121. [Google Scholar] [CrossRef]
- Aldaz, R.I.; Wiemer, M.W.; Miller, D.A.B.; Harris, J.S. Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave micromirror on a glass substrate. Opt. Express 2004, 12, 3967. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, T.; Tanaka, M.; Mitomo, J.; Nakajima, H.; Ito, M.; Ohara, M.; Kobayashi, N.; Fujii, K.; Watanabe, H.; Satou, S.; et al. Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror. Sci. Rep. 2018, 8, 10350. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Nakajima, H.; Ito, M.; Mitomo, J.; Satou, S.; Fuutagawa, N.; Narui, H. Lateral carrier confinement of GaN-based vertical-cavity surface-emitting diodes using boron ion implantation. Jpn. J. Appl. Phys. 2016, 55, 122101. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Nakajima, H.; Tanaka, M.; Ito, M.; Ohara, M.; Jyoukawa, T.; Kobayashi, N.; Matou, T.; Hayashi, K.; Watanabe, H.; et al. Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror. Appl. Phys. Express 2019, 12, 044004. [Google Scholar] [CrossRef]
- Nakajima, H.; Hamaguchi, T.; Tanaka, M.; Ito, M.; Jyokawa, T.; Matou, T.; Hayashi, K.; Ohara, M.; Kobayashi, N.; Watanabe, H.; et al. Single transverse mode operation of GaN-based vertical-cavity surface-emitting laser with monolithically incorporated curved mirror. Appl. Phys. Express 2019, 12, 084003. [Google Scholar] [CrossRef]
- Ito, M.; Hamaguchi, T.; Makino, T.; Hayashi, K.; Kearns, J.; Ohara, M.; Kobayashi, N.; Nagane, S.; Sato, K.; Nakamura, Y.; et al. Highly efficient operation and uniform characteristics of curved mirror Vertical-cavity surface-emitting lasers. Appl. Phys. Exp. 2022, 16, 012006. [Google Scholar] [CrossRef]
- Kearns, J.A.; Hamaguchi, T.; Hayashi, K.; Ohara, M.; Makino, T.; Ito, M.; Kobayashi, N.; Jyoukawa, T.; Nakayama, E.; Nagane, S.; et al. Mode control in long cavity VCSELs with a curved mirror. In Gallium Nitride Materials and Devices XVII; SPIE OPTO: San Francisco, CA, USA, 2022; Volume 12001, p. 1200108. [Google Scholar]
- Hayashi, K.; Hamaguchi, T.; Kearns, J.; Kobayashi, N.; Ohara, M.; Makino, T.; Nagane, S.; Sato, K.; Nakamura, Y.; Hoshina, Y.; et al. Narrow Emission of Blue GaN-Based Vertical-Cavity Surface-Emitting Lasers with a Curved Mirror. IEEE Photonics J. 2022, 14, 1536905. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Makino, T.; Hayashi, K.; Kearns, J.A.; Ohara, M.; Ito, M.; Kobayashi, N.; Nagane, S.; Sato, K.; Nakamura, Y.; et al. Spontaneously implemented spatial coherence in vertical-cavity surface-emitting laser dot array. Sci. Rep. 2022, 12, 21629. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Hoshina, Y.; Hayashi, K.; Tanaka, M.; Ito, M.; Ohara, M.; Jyoukawa, T.; Kobayashi, N.; Watanabe, H.; Yokozeki, M.; et al. Room-temperature continuous-wave operation of green vertical-cavity surface-emitting lasers with a curved mirror fabricated on {20−21} semi-polar GaN. Appl. Phys. Express 2020, 13, 041002. [Google Scholar] [CrossRef]
- Ito, M.; Hamaguchi, T.; Makino, T.; Hayashi, K.; Kearns, J.A.; Ohara, M.; Kobayashi, N.; Nagane, S.; Sato, K.; Nakamura, Y.; et al. Latest progress of high-efficient blue and green VCSELs with curved mirror. PRJ3-1. In Proceedings of the 29th International Display Workshops, Fukuoka, Japan, 14 December 2022. [Google Scholar]
- Hatakoshi, G.; Iga, K. Principal and Application System of VCSELs (Written in Japanese), 2nd ed.; Design Egg Inc.: Tokyo, Japan, 2022. [Google Scholar]
- Hamaguchi, T.; Hoshina, Y.; Jyokawa, T.; Ohara, M.; Hayashi, K.; Kobayashi, N.; Nagane, S.; Sato, K.; Nakamura, Y.; Kearns, J.; et al. 49-2: Invited Paper: Blue and Green VCSEL for Full-Color Display. In Digest of Technical Papers—SID International Symposium; 2021 held as an online event; Wiley: Hoboken, NJ, USA, 2021; Volume 52, pp. 677–679. [Google Scholar]
- Available online: https://www.retissa.biz/ (accessed on 2 February 2023).
- Kuroda, K.; Ishikawa, T.; Ayama, M.; Kubota, S. Color Speckle. Opt. Rev. 2014, 21, 83. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Tanaka, M.; Nakajima, H. A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation. Jpn. J. Appl. Phys. 2019, 58, SC0806. [Google Scholar] [CrossRef]
- Kearns, J.A.; Hamaguchi, T.; Hayashi, K.; Ohara, M.; Makino, T.; Ito, M.; Kobayashi, N.; Jyoukawa, T.; Nakayama, E.; Nagane, S.; et al. Longitudinal mode control in long cavity VCSELs with a curved mirror. Appl. Phys. Express 2022, 15, 072009. [Google Scholar] [CrossRef]
- Leonard, J.T.; Cohen, D.A.; Yonkee, B.P.; Farrell, R.M.; DenBaars, S.P.; Speck, J.S.; Nakamura, S. Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts. J. Appl. Phys. 2015, 118, 145304. [Google Scholar] [CrossRef]
- Lee, S.-G. Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts. Opt. Express 2019, 27, 31621. [Google Scholar] [CrossRef] [PubMed]
- Kiyohara, K.; Odawara, M.; Takeuchi, T.; Kamiyama, S.; Iwaya, M.; Akasaki, I.; Saito, T. Room-temperature continuous-wave operations of GaN-based vertical-cavity surface-emitting lasers with buried GaInN tunnel junctions. Appl. Phys. Express 2020, 13, 111003. [Google Scholar] [CrossRef]
- Shen, C.-C.; Lu, Y.-T.; Yeh, Y.-W.; Chen, C.-Y.; Chen, Y.-T.; Sher, C.-W.; Lee, P.-T.; Shih, Y.-H.; Lu, T.-C.; Wu, T.; et al. Design and fabrication of the reliable GaN based vertical-cavity surface-emitting laser via tunnel junction. Crystals 2019, 9, 187. [Google Scholar] [CrossRef]
- Hamaguchi, T. Highly-efficient operation and mode control in GaN-based VCSELs with a curved mirror. In Gallium Nitride Materials and Devices XVIII, 124210H; SPIE: San Francisco, CA, USA, 2023; Volume 12421. [Google Scholar]
- Funato, M.; Kaneta, A.; Kawakami, Y.; Enya, Y.; Nishizuka, K.; Ueno, M.; Nakamura, T. Weak Carrier/Exciton Localization in InGaN Quantum Wells for Green Laser Diodes Fabricated on Semi-Polar {2021} GaN Substrates. Appl. Phys. Express 2010, 3, 021002. [Google Scholar] [CrossRef]
- Mei, Y.; Weng, G.E.; Zhang, B.P.; Liu, J.P.; Hofmann, W.; Ying, L.Y.; Zhang, J.Y.; Li, Z.C.; Yang, H.; Kuo, H. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’. Light Sci. Appl. 2017, 6, 16199. [Google Scholar] [CrossRef]
- Iida, D.; Kirilenko, P.; Velazquez-Rizo, M.; Zhuang, Z.; Najmi, M.; Ohkawa, K. Demonstration of 621-nm-wavelength InGaN-based single-quantum-well LEDs with an external quantum efficiency of 4.3% at 10.1 A/cm2. AIP Adv. 2022, 12, 065125. [Google Scholar] [CrossRef]
- Yanagihara, A.; Kishino, K. monolithically integrated green-to-orange color InGaN-based nanocolumn photonic crystal LEDs with directional radiation beam profiles. Appl. Phys. Express 2022, 15, 022013. [Google Scholar] [CrossRef]
- Takeo, A.; Ichikawa, S.; Maeda, S.; Timmerman, D.; Tatebayashi, J.; Fujiwara, Y. Droop-free amplified red emission from Eu ions in GaN. Jpn. J. Appl. Phys. 2021, 60, 120905. [Google Scholar] [CrossRef]
- Michalzik, R. VCSLEs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers; Springer: New York, NY, USA, 2013; p. 386. [Google Scholar]
- Sandanayaka, A.S.; Matsushima, T.; Bencheikh, F.; Terakawa, S.; Potscavage, W.J.; Qin, C.; Fujihara, T.; Goushi, K.; Ribierre, J.C.; Adachi, C. Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 2019, 12, 061010. [Google Scholar] [CrossRef]
Materials | Thermal Conductivity (W mK−1) |
---|---|
SiO2 | 1.5 |
SiN | 1.6 |
GaN | 130 |
Al0.84InN | 4.5 |
All-Dielectric (Curved-Mirror) | All-Dielectric (Flat-Mirrors) | Hybrid (Flat-Mirrors) | |
---|---|---|---|
Affiliation | Sony [27,28,29,30,31,32,33,34,35,36] | Nichia [20], UCSB [43,44], Xiamen [21,49], etc. | Meijo and Stanley [15], Nichia [16], NYCU [5], etc. |
Bottom DBR | Dielectric (curved) | Dielectric (flat) | Semiconductor (flat) |
Top DBR | Dielectric (flat) | Dielectric (flat/mesa) | Dielectric (flat/mesa) |
Cavity length | 10~50 um | A few microns | A few microns |
Wall plug efficiency | >15% | ~1% | >15% |
Output power | >10 mW | ~mW | >10 mW |
Life | >1000 h | ~minutes | >1000 h |
Lasing yield | 100% | Not reported | >80% |
Colors | blue (c-plane) and green (semi-polar) | Blue (c-plane) Green (c-plane, quantum dot) | Blue (c-plane) Green (c-plane) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamaguchi, T. GaN-Based VCSELs with A Monolithic Curved Mirror: Challenges and Prospects. Photonics 2023, 10, 470. https://doi.org/10.3390/photonics10040470
Hamaguchi T. GaN-Based VCSELs with A Monolithic Curved Mirror: Challenges and Prospects. Photonics. 2023; 10(4):470. https://doi.org/10.3390/photonics10040470
Chicago/Turabian StyleHamaguchi, Tatsushi. 2023. "GaN-Based VCSELs with A Monolithic Curved Mirror: Challenges and Prospects" Photonics 10, no. 4: 470. https://doi.org/10.3390/photonics10040470
APA StyleHamaguchi, T. (2023). GaN-Based VCSELs with A Monolithic Curved Mirror: Challenges and Prospects. Photonics, 10(4), 470. https://doi.org/10.3390/photonics10040470