FACAM: A Fast and Accurate Clustering Analysis Method for Protein Complex Quantification in Single Molecule Localization Microscopy
Abstract
:1. Introduction
2. Methods
2.1. Experimental Datasets
2.1.1. Cell Culture and Sample Preparation
2.1.2. Imaging and Data Processing
2.2. Simulated Datasets
2.2.1. Simulated Datasets for the Performance Comparison of FACAM with ClusterViSu
2.2.2. Simulated Datasets for the Performance Comparison of FACAM with Ripley’s H Function
2.3. FACAM
2.3.1. The Working Principle of FACAM
2.3.2. Adaptive Determination of Segmentation Threshold
2.4. Counting the Number of Protein Molecules in a Cluster
3. Results and Discussion
3.1. The Clustering Performance of FACAM, DBSCAN, and ClusterViSu on Simulated Data with Different Noise Levels
3.2. The Clustering Performance of FACAM, DBSCAN, and ClusterViSu on Simulated Data
3.3. The Computation Time of FACAM and Several Popular Clustering Analysis Methods
3.4. Quantitative Analysis of Experimental Data by FACAM, DBSCAN, and ClusterViSu
3.5. Validation of the Clustering Performance Using Prior Biological Knowledge
3.5.1. Validation via Nuclear Pore Complexes
3.5.2. Validation via Membrane Protein CD138
3.5.3. Validation via Erythrocyte Cytoskeletons
3.6. Protein Counting
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelek, M.; Gyparaki, M.T.; Beliu, G.; Schueder, F.; Griffie, J.; Manley, S.; Jungmann, R.; Sauer, M.; Lakadamyali, M.; Zimmer, C. Single-molecule localization microscopy. Nat. Rev. Methods Primers 2021, 1, 39. [Google Scholar] [CrossRef]
- Hoboth, P.; Šebesta, O.; Hozák, P. How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription. Int. J. Mol. Sci. 2021, 22, 6694. [Google Scholar] [CrossRef]
- Nieto-Garai, J.A.; Olazar-Intxausti, J.; Anso, I.; Lorizate, M.; Terrones, O.; Contreras, F.-X. Super-Resolution Microscopy to Study Interorganelle Contact Sites. Int. J. Mol. Sci. 2022, 23, 15354. [Google Scholar] [CrossRef]
- Wu, Y.L.; Tschanz, A.; Krupnik, L.; Ries, J. Quantitative Data Analysis in Single-Molecule Localization Microscopy. Trends Cell Biol. 2020, 30, 837–851. [Google Scholar] [CrossRef]
- Levet, F.; Hosy, E.; Kechkar, A.; Butler, C.; Beghin, A.; Choquet, D.; Sibarita, J.B. SR-Tesseler: A method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods 2015, 12, 1065–1071. [Google Scholar] [CrossRef]
- Thevathasan, J.V.; Kahnwald, M.; Cieśliński, K.; Hoess, P.; Peneti, S.K.; Reitberger, M.; Heid, D.; Kasuba, K.C.; Hoerner, S.J.; Li, Y.; et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods 2019, 16, 1045–1053. [Google Scholar] [CrossRef]
- Ripley, B.D. Modelling Spatial Patterns. J. R. Stat. Soc. Ser. B 1977, 39, 172–192. [Google Scholar] [CrossRef]
- Malkusch, S.; Muranyi, W.; Muller, B.; Krausslich, H.G.; Heilemann, M. Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem. Cell Biol. 2013, 139, 173–179. [Google Scholar] [CrossRef]
- Owen, D.M.; Rentero, C.; Rossy, J.; Magenau, A.; Williamson, D.; Rodriguez, M.; Gaus, K. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J. Biophotonics 2010, 3, 446–454. [Google Scholar] [CrossRef]
- Endesfelder, U.; Finan, K.; Holden, S.J.; Cook, P.R.; Kapanidis, A.N.; Heilemann, M. Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys. J. 2013, 105, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Malkusch, S.; Heilemann, M. Extracting quantitative information from single-molecule super-resolution imaging data with LAMA—LocAlization Microscopy Analyzer. Sci. Rep. 2016, 6, 34486. [Google Scholar] [CrossRef]
- Nan, X.; Collisson, E.A.; Lewis, S.; Huang, J.; Tamguney, T.M.; Liphardt, J.T.; McCormick, F.; Gray, J.W.; Chu, S. Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 18519–18524. [Google Scholar] [CrossRef] [Green Version]
- Sieben, C.; Banterle, N.; Douglass, K.M.; Gonczy, P.; Manley, S. Multicolor single-particle reconstruction of protein complexes. Nat. Methods 2018, 15, 777–780. [Google Scholar] [CrossRef]
- Marenda, M.; Lazarova, E.; van de Linde, S.; Gilbert, N.; Michieletto, D. Parameter-free molecular super-structures quantification in single-molecule localization microscopy. J. Cell Biol. 2021, 220, e202010003. [Google Scholar] [CrossRef]
- Verzelli, P.; Nold, A.; Sun, C.; Heilemann, M.; Schuman, E.M.; Tchumatchenko, T. Unbiased choice of global clustering parameters for single-molecule localization microscopy. Sci. Rep. 2022, 12, 22561. [Google Scholar] [CrossRef]
- Mazouchi, A.; Milstein, J.N. Fast Optimized Cluster Algorithm for Localizations (FOCAL): A spatial cluster analysis for super-resolved microscopy. Bioinformatics 2016, 32, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Andronov, L.; Orlov, I.; Lutz, Y.; Vonesch, J.L.; Klaholz, B.P. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci. Rep. 2016, 6, 24084. [Google Scholar] [CrossRef] [Green Version]
- Khater, I.M.; Nabi, I.R.; Hamarneh, G. A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods. Patterns 2020, 1, 100038. [Google Scholar] [CrossRef]
- Scurll, J.M.; Abraham, L.; Zheng, D.W.; Tafteh, R.; Chou, K.C.; Gold, M.R.; Coombs, D. StormGraph: A graph-based algorithm for quantitative clustering analysis of diverse single-molecule localization microscopy data. bioRxiv 2020, 515627. [Google Scholar] [CrossRef]
- Griffie, J.; Shannon, M.; Bromley, C.L.; Boelen, L.; Burn, G.L.; Williamson, D.J.; Heard, N.A.; Cope, A.P.; Owen, D.M.; Rubin-Delanchy, P. A Bayesian cluster analysis method for single-molecule localization microscopy data. Nat. Protoc. 2016, 11, 2499–2514. [Google Scholar] [CrossRef] [PubMed]
- Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 1983, 29, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Yan, R.; Li, W.; Xu, K. Super-Resolution Microscopy Reveals the Native Ultrastructure of the Erythrocyte Cytoskeleton. Cell Rep. 2018, 22, 1151–1158. [Google Scholar] [CrossRef] [Green Version]
- Baldering, T.N.; Karathanasis, C.; Harwardt, M.I.E.; Freund, P.; Meurer, M.; Rahm, J.V.; Knop, M.; Dietz, M.S.; Heilemann, M. CRISPR/Cas12a-mediated labeling of MET receptor enables quantitative single-molecule imaging of endogenous protein organization and dynamics. iScience 2021, 24, 101895. [Google Scholar] [CrossRef]
- Li, L.; Xin, B.; Kuang, W.; Zhou, Z.; Huang, Z.L. Divide and conquer: Real-time maximum likelihood fitting of multiple emitters for super-resolution localization microscopy. Opt. Express 2019, 27, 21029–21049. [Google Scholar] [CrossRef]
- Ovesný, M.; Křížek, P.; Borkovec, J.; Švindrych, Z.; Hagen, G.M. ThunderSTORM: A comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 2014, 30, 2389–2390. [Google Scholar] [CrossRef] [Green Version]
- Still, E.; Hosemann, P. Alpha Shape Analysis: Extracting Composition, Surface Area, and Volume Post Clustering. Microsc. Microanal. 2020, 26, 2080–2082. [Google Scholar] [CrossRef]
- Xu, X.; Harada, K. Automatic surface reconstruction with alpha-shape method. Vis. Comput. 2003, 19, 431–443. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, H. Alpha shape and Delaunay triangulation in studies of protein-related interactions. Brief. Bioinformatics 2014, 15, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Nerreter, T.; Letschert, S.; Gotz, R.; Doose, S.; Danhof, S.; Einsele, H.; Sauer, M.; Hudecek, M. Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nat. Commun. 2019, 10, 3137. [Google Scholar] [CrossRef] [Green Version]
- Boissonnat, J.-D.; Dyer, R.; Ghosh, A. Delaunay Triangulation of Manifolds. Found. Comput. Math. 2018, 18, 399–431. [Google Scholar] [CrossRef]
- Nicovich, P.R.; Owen, D.M.; Gaus, K. Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat. Protoc. 2017, 12, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Hummer, G.; Fricke, F.; Heilemann, M. Model-independent counting of molecules in single-molecule localization microscopy. Mol. Biol. Cell 2016, 27, 3637–3644. [Google Scholar] [CrossRef]
Number of Localizations | FACAM | DBSCAN | Ripley | ClusterViSu |
---|---|---|---|---|
1 × 104 | 8 s | 9 s | 4 s | 325 s |
1 × 105 | 42 s | 235 s | 75 s | * |
2 × 105 | 112 s | 1220 s | 545 s | * |
5 × 105 | 465 s | 7020 s | 3327 s | * |
1 × 106 | 1609 s | 24,955 s | 10,750 s | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Kuang, W.; Zhou, Z.; Zhang, Y.; Huang, Z.-L. FACAM: A Fast and Accurate Clustering Analysis Method for Protein Complex Quantification in Single Molecule Localization Microscopy. Photonics 2023, 10, 427. https://doi.org/10.3390/photonics10040427
Wu C, Kuang W, Zhou Z, Zhang Y, Huang Z-L. FACAM: A Fast and Accurate Clustering Analysis Method for Protein Complex Quantification in Single Molecule Localization Microscopy. Photonics. 2023; 10(4):427. https://doi.org/10.3390/photonics10040427
Chicago/Turabian StyleWu, Cheng, Weibing Kuang, Zhiwei Zhou, Yingjun Zhang, and Zhen-Li Huang. 2023. "FACAM: A Fast and Accurate Clustering Analysis Method for Protein Complex Quantification in Single Molecule Localization Microscopy" Photonics 10, no. 4: 427. https://doi.org/10.3390/photonics10040427
APA StyleWu, C., Kuang, W., Zhou, Z., Zhang, Y., & Huang, Z. -L. (2023). FACAM: A Fast and Accurate Clustering Analysis Method for Protein Complex Quantification in Single Molecule Localization Microscopy. Photonics, 10(4), 427. https://doi.org/10.3390/photonics10040427