Dispersion Engineering of Waveguide Microresonators by the Design of Atomic Layer Deposition
Abstract
:1. Introduction
2. Dispersion Simulation
3. Device Fabrication and Results
3.1. Device Fabrication and Dispersion Measurement
3.2. Results of ALD HfO2 Cladding
3.3. Results of ALD Al2O3 Cladding
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghatak, A.; Thyagarajan, K. Introduction to Fiber Optics; Cambridge University Press: Cambridge, CA, USA, 1998. [Google Scholar]
- Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Chen, L.; Xu, Q.; Lipson, M. Understanding dispersion and waveguiding in silicon wire waveguides. Opt. Express 2008, 16, 14986–14991. [Google Scholar]
- Peccianti, M.; Assanto, G. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. IEEE J. Quantum Electron. 2016, 52, 1–18. [Google Scholar]
- Ellis, A.D. Dispersion management for high-speed optical communications. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 418–431. [Google Scholar]
- Hong, Y.; Hong, Y.; Hong, J.; Lu, G.-W. Dispersion optimization of silicon nitride waveguides for efficient four-wave mixing. Photonics 2021, 8, 161. [Google Scholar] [CrossRef]
- Kordts, A.; Pfeiffer, M.H.; Guo, H.; Brasch, V.; Kippenberg, T.J. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett. 2016, 41, 452–455. [Google Scholar] [CrossRef] [Green Version]
- Chavez Boggio, J.M.; Bodenmüller, D.; Fremberg, T.; Haynes, R.; Roth, M.M.; Eisermann, R.; Lisker, M.; Zimmermann, L.; Böhm, M. Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization. J. Opt. Soc. Am. B 2014, 31, 2846–2857. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, M.; Lu, L.; Li, M.; Wang, J.; Zhou, F.; Dai, J.; Deng, L.; Liu, D. Ultra-flat and broad optical frequency combs generation based on novel dispersion-flattened double-slot microring resonator. Appl. Phys. A 2016, 122, 11. [Google Scholar] [CrossRef]
- Guo, Y.; Jafari, Z.; Agarwal, A.M.; Kimerling, L.C.; Li, G.; Michel, J.; Zhang, L. Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths. Opt. Lett. 2016, 41, 4939–4942. [Google Scholar] [CrossRef]
- Pfeiffer, M.H.; Kordts, A.; Brasch, V.; Zervas, M.; Geiselmann, M.; Jost, J.D.; Kippenberg, T.J. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 2016, 3, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Xuan, Y.; Liu, Y.; Varghese, L.T.; Metcalf, A.J.; Xue, X.; Wang, P.-H.; Han, K.; Jaramillo-Villegas, J.A.; Al Noman, A.; Wang, C.; et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 2016, 3, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Gondarenko, A.; Levy, J.S.; Lipson, M. High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 2009, 17, 11366–11370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.-P.; Lee, T.-H.; Chen, Y.-Y.; Wang, P.-H. Dispersion engineering of silicon nitride microresonators via reconstructable SU-8 polymer cladding. Micromachines 2022, 13, 454. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Subramanian, A.Z.; Häyrinen, M.; Selvaraja, S.; Verheyen, P.; Van Thourhout, D.; Honkanen, S.; Lipsanen, H.; Baets, R. Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths. Opt. Express 2014, 22, 5684–5692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riemensberger, J.; Hartinger, K.; Herr, T.; Brasch, V.; Holzwarth, R.; Kippenberg, T.J. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express 2012, 20, 27661–27669. [Google Scholar] [CrossRef] [Green Version]
- Kiani, K.M.; Mbonde, H.M.; Frankis, H.C.; Mateman, R.; Leinse, A.; Knights, A.P.; Bradley, J.D.B. Four-wave mixing in High-Q tellurium-oxide-coated silicon nitride microring resonators. OSA Continuum 2020, 3, 3497–3507. [Google Scholar] [CrossRef]
- Marisova, M.P.; Andrianov, A.V.; Leuchs, G.; Anashkina, E.A. Dispersion tailoring and four-wave mixing in silica microspheres with germanosilicate coating. Photonics 2021, 8, 473. [Google Scholar] [CrossRef]
- Guo, K.; Christensen, J.B.; Shi, X.; Christensen, E.N.; Lin, L.; Ding, Y.; Ou, H.; Rottwitt, K. Experimentally validated dispersion tailoring in a silicon strip waveguide with alumina thin-film coating. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Inga, M.; Fujii, L.; Filho, J.M.C.S.; Palhares, J.H.Q.; Ferlauto, A.S.; Marques, F.C.; Alegre, T.P.M.; Wiederhecker, G. Alumina coating for dispersion management in ultra-high Q microresonators. APL Photonics 2020, 5, 116107. [Google Scholar] [CrossRef]
- RSoft FemSIM, RSoft Products; Synopsys, Inc.: Mountain View, CA, USA, 2007.
- Fujii, S.; Tanabe, T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics 2020, 9, 1087–1104. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.H.; Lee, T.H.; Huang, W.H. Fabrication of tapered waveguides by i-line UV lithography for flexible coupling control. Opt. Express 2023, 31, 4281–4290. [Google Scholar] [CrossRef]
- Mackus, A.J.M.; Bol, A.A.; Kessels, W.M.M. The use of atomic layer deposition in advanced nanopatterning. Nanoscale 2014, 6, 10941–10960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biercuk, M.J.; Monsma, D.J.; Marcus, C.M.; Becker, J.S.; Gordon, R.G. Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications. Appl. Phys. Lett. 2003, 83, 2405–2407. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.-H.; Hou, N.-L.; Ho, K.-L. Dispersion Engineering of Waveguide Microresonators by the Design of Atomic Layer Deposition. Photonics 2023, 10, 428. https://doi.org/10.3390/photonics10040428
Wang P-H, Hou N-L, Ho K-L. Dispersion Engineering of Waveguide Microresonators by the Design of Atomic Layer Deposition. Photonics. 2023; 10(4):428. https://doi.org/10.3390/photonics10040428
Chicago/Turabian StyleWang, Pei-Hsun, Nien-Lin Hou, and Kung-Lin Ho. 2023. "Dispersion Engineering of Waveguide Microresonators by the Design of Atomic Layer Deposition" Photonics 10, no. 4: 428. https://doi.org/10.3390/photonics10040428
APA StyleWang, P. -H., Hou, N. -L., & Ho, K. -L. (2023). Dispersion Engineering of Waveguide Microresonators by the Design of Atomic Layer Deposition. Photonics, 10(4), 428. https://doi.org/10.3390/photonics10040428