Quantitative Analysis of φ-OTDR Spatial Resolution Influenced by NLM Parameters
Abstract
:1. Introduction
2. Processing Steps for Signal SR Affected by NLM Parameters
2.1. -OTDR Signal
2.2. NLM Parameters
2.3. Steps for Obtaining the Relationship between FWHM and NLM Parameters
- Input a noisy signal;
- Calculate the FWHM and AM of the reference signal;
- Denoise the noisy signal with SIWS = 10, SEWS = 100, and the GSP increasing from 0.02 with a step of 0.001;
- Calculate the FWHM and AM of the denoised signal;
- Repeat steps 3 to 4 until the GSP reaches 0.1;
- Calculate the FWHM/FWHM and AM/AM.
3. SR of Simulated Signals Varies with the NLM Parameters
3.1. FWHM Varies with NLM Parameters
3.2. AM Varies with NLM Parameters
3.3. Analysis
4. SR of -OTDR Signals Varies with NLM Parameters
4.1. FWHM Varies with NLM Parameters
4.2. AM Varies with NLM Parameters
4.3. Analysis
5. Discussion
6. Conclusions
- 1.55% (SIWS) > 0.72% (SEWS) > 0.29% (GSP);
- 2.77% (SIWS) > 0.06% (SEWS) 0.09% (GSP).
- 9.55% (GSP) > 0.05% (SIWS) 0.04% (SEWS);
- 13.51% (GSP) > 0.08% (SIWS) > 0.03% (SEWS).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soto, M.A.; Ramírez, J.A.; Thévenaz, L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun. 2016, 7, 10870. [Google Scholar] [CrossRef]
- Soto, M.A.; Ramírez, J.A.; Thévenaz, L. Reaching millikelvin resolution in Raman distributed temperature sensing using image processing. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors (EWOFS’2016), Limerick, Ireland, 31 May–3 June 2016; Volume 9916. [Google Scholar]
- Wang, X.; Wang, Z.; Wang, S.; Xue, N.; Sun, W.; Zhang, L.; Zhang, B.; Rao, Y. 157 km BOTDA with pulse coding and image processing. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors (EWOFS’2016), Limerick, Ireland, 31 May–3 June 2016; Volume 9916. [Google Scholar]
- Guo, N.; Wang, L.; Wu, H.; Jin, C.; Tam, H.-Y.; Lu, C. Enhanced coherent BOTDA system without trace averaging. J. Light. Technol. 2018, 36, 871–878. [Google Scholar] [CrossRef]
- Zhao, S.; Cui, J.; Wu, Z.; Tan, J. Accuracy improvement in OFDR-based distributed sensing system by image processing. Opt. Laser Eng. 2020, 124, 105824. [Google Scholar] [CrossRef]
- Soto, M.A.; Ramírez, J.A.; Thévenaz, L. Optimizing Image Denoising for Long-Range Brillouin Distributed Fiber Sensing. J. Light. Technol. 2018, 36, 1168–1177. [Google Scholar] [CrossRef]
- Qian, X.; Wang, Z.; Sun, W.; Zhang, B.; He, Q.; Zhang, L.; Wu, H.; Rao, Y. Long-range BOTDA denoising with multi-threshold 2D discrete wavelet. In Proceedings of the Asia-Pacific Optical Sensors Conference (APOS), OSA Technial Digest, Shanghai, China, 11–14 October 2016; p. W4A.24. [Google Scholar]
- He, H.; Shao, L.; Li, H.; Pan, W.; Luo, B.; Zou, X.; Yan, X. SNR enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering algorithm. IEEE Photonics J. 2017, 9, 6802610. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Zhao, Z.; Guo, N.; Shu, C.; Lu, C. Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques. Opt. Express 2018, 26, 5126–5139. [Google Scholar] [CrossRef]
- Wang, B.; Wang, L.; Yu, C.; Lu, C. Long-distance BOTDA sensing systems using video-BM3D denoising for both static and slowly varying environment. Opt. Express 2019, 27, 36100–36113. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, D.; Feng, Y.; Jiang, X.; Wang, L. Application of adaptive NLM denoising algorithm in BOTDA. In Proceedings of the Global Intelligent Industry Conference, Guangzhou, China, 16–17 December 2021; Volume 11780, p. 117801B. [Google Scholar]
- Li, J.; Zeng, K.; Yang, G.; Wang, L.; Mi, J.; Wan, L.; Tang, M.; Liu, D. High-fidelity denoising for differential pulse-width pair brillouin optical time domain analyzer based on block-matching and 3D filtering. Opt. Commun. 2022, 525, 128866. [Google Scholar] [CrossRef]
- Luo, K.; Wang, B.; Guo, N.; Kuanglu, Y.U.; Lu, C. Enhancing SNR by anisotropic diffusion for brillouin distributed optical fiber sensors. J. Light. Technol. 2020, 38, 5844–5852. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, B.; Yang, Y.; Azad, A.K.; Luo, K.; Yu, K.; Yu, C.; Lu, C. SNR enhancement for Brillouin distributed optical fiber sensors based on asynchronous control. Opt. Express 2022, 30, 4231–4248. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Jia, X.; Wang, Z.; Zhang, B.; Xue, N.; Sun, W.; He, Q.; Wu, H. Noise level estimation of BOTDA for optimal non-local means denoising. Appl. Opt. 2017, 56, 4727–4734. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, S.; Min, W. No-reference/blind image quality assessment: A survey. IETE Tech. Rev. 2017, 34, 223–245. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Y.; Zhu, P.; Chen, W. NLM parameter optimization for φ-OTDR signal. J. Light. Technol. 2022, 40, 6045–6051. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, P.; Yin, Y.; Wu, M.; Yu, K.; Feng, L.; Chen, W. Objective assessment of IPM denoising quality of φ-OTDR signal. Measurement 2023, 214, 112775. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Zhang, Z.; Wang, J.; He, C.; Wu, T. Noise reduction by brillouin spectrum reassembly in brillouin optical time domain sensors. Opt. Laser Eng. 2020, 125, 105865. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Chen, L.; Wu, T.; He, C. Segmented noise reduction based on Brillouin-spectrum-partition in Brillouin optical time domain sensors. IEEE Sens. J. 2021, 21, 22792–22802. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, Z.; Zhao, C.; Wu, H.; Lu, C.; Tang, M. Improving the spatial resolution of a BOTDA sensor using deconvolution algorithm. J. Light. Technol. 2021, 39, 2215–2222. [Google Scholar] [CrossRef]
- Yuan, P.; Lu, Y.; Zhang, Y.; Zhang, Z. Noise reduction in a Brillouin optical time-domain sensor by a frequency-domain feature filter. Appl. Opt. 2022, 61, 2667–2674. [Google Scholar]
- Zhang, Z.; Wu, H.; Zhao, C.; Tang, M. High-performance raman distributed temperature sensing powered by deep learning. J. Light. Technol. 2021, 39, 654–659. [Google Scholar] [CrossRef]
- Ge, Z.; Shen, L.; Zhao, C.; Wu, H.; Zhao, Z.; Tang, M. Enabling variable high spatial resolution retrieval from a long pulse BOTDA sensor. IEEE Internet Things 2022, 10, 1813–1821. [Google Scholar] [CrossRef]
- Datta, A.; Raj, V.; Sankar, V.; Kalyani, S.; Srinivasan, B. Measurement accuracy enhancement with multi-event detection using the deep learning approach in Raman distributed temperature sensors. Opt. Express 2021, 29, 26745–26764. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.J.J.; Humbert, G.; Dong, H.; Zhang, H.; Hao, J.; Sun, Q. Review of Specialty Fiber Based Brillouin Optical Time Domain Analysis Technology. Photonics 2021, 8, 421. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Fan, C.; Yan, B.; Chen, J.; Yan, Z.; Sun, Q. Review of a Specialty Fiber for Distributed Acoustic Sensing Technology. Photonics 2022, 9, 277. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, H.; Hu, D.J.J.; Hao, J. Overcoming the Lead Fiber-Induced Limitation on Pulse Repetition Rate in Distributed Fiber Sensors. Photonics 2022, 9, 965. [Google Scholar] [CrossRef]
- Liu, X.; Wu, H.; Wang, Y.; Tu, Y.; Sun, Y.; Liu, L.; Song, Y.; Wu, Y.; Yan, G. A Fast Accurate Attention-Enhanced ResNet Model for Fiber-Optic Distributed Acoustic Sensor (DAS) Signal Recognition in Complicated Urban Environments. Photonics 2022, 9, 677. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2015; pp. 60–65. [Google Scholar]
Parameter | FWHM/FWHM | AM/AM | FCL-ACF |
---|---|---|---|
GSP | 100.29% | 90.45% | 0.9888 |
SIWS | 101.84% | 90.79% | 0.9963 |
SEWS | 102.56% | 90.75% | 0.9978 |
Parameter | FWHM/FWHM | AM/AM | FCL-ACF |
---|---|---|---|
GSP | 99.91% | 86.49% | 0.372 |
SIWS | 102.68% | 86.41% | 0.422 |
SEWS | 102.74% | 86.38% | 0.445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhu, S.; Yu, K.; Wu, M.; Feng, L.; Zhu, P.; Chen, W. Quantitative Analysis of φ-OTDR Spatial Resolution Influenced by NLM Parameters. Photonics 2023, 10, 529. https://doi.org/10.3390/photonics10050529
Chen Y, Zhu S, Yu K, Wu M, Feng L, Zhu P, Chen W. Quantitative Analysis of φ-OTDR Spatial Resolution Influenced by NLM Parameters. Photonics. 2023; 10(5):529. https://doi.org/10.3390/photonics10050529
Chicago/Turabian StyleChen, Yunfei, Shuhan Zhu, Kaimin Yu, Minfeng Wu, Lei Feng, Peibin Zhu, and Wen Chen. 2023. "Quantitative Analysis of φ-OTDR Spatial Resolution Influenced by NLM Parameters" Photonics 10, no. 5: 529. https://doi.org/10.3390/photonics10050529
APA StyleChen, Y., Zhu, S., Yu, K., Wu, M., Feng, L., Zhu, P., & Chen, W. (2023). Quantitative Analysis of φ-OTDR Spatial Resolution Influenced by NLM Parameters. Photonics, 10(5), 529. https://doi.org/10.3390/photonics10050529