Performance Analysis and Power Tilt Mitigation of Ultra-Wideband WDM Transmission Systems
Abstract
:1. Introduction
2. Analysis of the UWB WDM Transmission System
2.1. System Model and Simulation Setup
2.2. Five-Band Individual Channel Performance Analysis and Modulation Format Assignment
2.3. Results of the Five-Band WDM Transmission
2.4. Conclusions and Discussion
3. Compensation Scheme for Spectral Power Tilt
3.1. Compensation Scheme for ISRS
Algorithm 1 Partitioned particle swarm optimization. |
|
3.2. Simulation and Results
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cisco. Cisco Annual Internet Report (2018–2023) White Paper; Cisco: San Jose, CA, USA, 2020. [Google Scholar]
- Cisco. 2021 Global Networking Trends Report; Cisco: San Jose, CA, USA, 2020. [Google Scholar]
- Qian, D.; Huang, M.F.; Ip, E.; Huang, Y.K.; Shao, Y.; Hu, J.; Wang, T. 101.7 Tb/s (370 × 294-Gb/s) PDM-128QAM-OFDM transmission over 3 × 55-km SSMF using pilot-based phase noise mitigation. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 6–10 March 2011; p. PDPB5. [Google Scholar]
- Puttnam, B.J.; Rademacher, G.; Luís, R.S. Space-division multiplexing for optical fiber communications. Optica 2021, 8, 1186–1203. [Google Scholar] [CrossRef]
- Rademacher, G.; Puttnam, B.J.; Luís, R.S.; Eriksson, T.A.; Fontaine, N.K.; Mazur, M.; Chen, H.; Ryf, R.; Neilson, D.T.; Sillard, P.; et al. 1.01 Peta-bit/s C+ L-band transmission over a 15-mode fiber. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–4. [Google Scholar]
- Rademacher, G.; Puttnam, B.J.; Luís, R.S.; Sakaguchi, J.; Klaus, W.; Eriksson, T.A.; Awaji, Y.; Hayashi, T.; Nagashima, T.; Nakanishi, T.; et al. Multi-span transmission over 65 km 38-core 3-mode fiber. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–4. [Google Scholar]
- Kong, D.; Jørgensen, A.; Henriksen, M.; Klejs, F.; Ye, Z.; Helgason, Ò.; Hansen, H.; Hu, H.; Yankov, M.; Forchhammer, S.; et al. Single dark-pulse kerr comb supporting 1.84 Pbit/s transmission over 37-core fiber. In Proceedings of the CLEO: QELS_Fundamental Science, Washington, DC, USA, 10–15 May 2020; p. JTh4A–7. [Google Scholar]
- Singh, J.; Ahrens, A.; Lochmann, S. Joint Pre-and Post-Equalization with Higher-Order Modulation Formats in SDM-Based Optical MIMO Systems. Photonics 2022, 9, 876. [Google Scholar] [CrossRef]
- Ferrari, A.; Napoli, A.; Fischer, J.K.; Costa, N.; D’Amico, A.; Pedro, J.; Forysiak, W.; Pincemin, E.; Lord, A.; Stavdas, A.; et al. Assessment on the achievable throughput of multi-band ITU-T G. 652. D fiber transmission systems. J. Light. Technol. 2020, 38, 4279–4291. [Google Scholar] [CrossRef]
- Renaudier, J.; Meseguer, A.C.; Ghazisaeidi, A.; Tran, P.; Muller, R.R.; Brenot, R.; Verdier, A.; Blache, F.; Mekhazni, K.; Duval, B.; et al. First 100-nm continuous-band WDM transmission system with 115Tb/s transport over 100km using novel ultra-wideband semiconductor optical amplifiers. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017; pp. 1–3. [Google Scholar]
- Hamaoka, F.; Minoguchi, K.; Sasai, T.; Matsushita, A.; Nakamura, M.; Okamoto, S.; Yamazaki, E.; Kisaka, Y. 150.3 Tb/s ultra-wideband (S-, C-, and L-bands) single-mode fibre transmission over 40-km using > 519Gb/s/A PDM-128QAM signals. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar]
- Galdino, L.; Edwards, A.; Yi, W.; Sillekens, E.; Wakayama, Y.; Gerard, T.; Pelouch, W.S.; Barnes, S.; Tsuritani, T.; Killey, R.I.; et al. Optical fibre capacity optimisation via continuous bandwidth amplification and geometric shaping. IEEE Photonics Technol. Lett. 2020, 32, 1021–1024. [Google Scholar] [CrossRef]
- Okamoto, S.; Minoguchi, K.; Hamaoka, F.; Horikoshi, K.; Matsushita, A.; Nakamura, M.; Yamazaki, E.; Kisaka, Y. A study on the effect of ultra-wide band WDM on optical transmission systems. J. Light. Technol. 2019, 38, 1061–1070. [Google Scholar] [CrossRef]
- Puttnam, B.J.; Luís, R.S.; Rademacher, G.; Mendez-Astudillio, M.; Awaji, Y.; Furukawa, H. S-, C-and L-band transmission over a 157 nm bandwidth using doped fiber and distributed Raman amplification. Opt. Express 2022, 30, 10011–10018. [Google Scholar] [CrossRef] [PubMed]
- Puttnam, B.J.; Luís, R.S.; Rademacher, G.; Awaji, Y.; Furukawa, H. Investigation of Long-Haul S-, C-+ L-Band Transmission. In Proceedings of the Optical Fiber Communication Conference, Washington, DC, USA, 6–11 June 2022; p. W3C-5. [Google Scholar]
- Hazarika, P.; Tan, M.; Donodin, A.; Noor, S.; Phillips, I.; Harper, P.; Stone, J.S.; Li, M.J.; Forysiak, W. E-, S-, C-and L-band coherent transmission with a multistage discrete Raman amplifier. Opt. Express 2022, 30, 43118–43126. [Google Scholar] [CrossRef] [PubMed]
- Ghazisaeidi, A.; Arnould, A.; Ionescu, M.; Aref, V.; Mardoyan, H.; Etienne, S.; Duval, M.; Bastide, C.; Bissessur, H.; Renaudier, J. 99.35 Tb/s Ultra-wideband Unrepeated Transmission Over 257 km Using Semiconductor Optical Amplifiers and Distributed Raman Amplification. J. Light. Technol. 2022, 40, 7014–7019. [Google Scholar] [CrossRef]
- Virgillito, E.; London, E.; D’Amico, A.; Correia, B.; Napoli, A.; Curri, V. Single-vs. Multi-Band Optimized Power Control in C+ L WDM 400G Line Systems. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–11 June 2021; pp. 1–3. [Google Scholar]
- Roberts, I.; Kahn, J.M.; Harley, J.; Boertjes, D.W. Channel power optimization of WDM systems following Gaussian noise nonlinearity model in presence of stimulated Raman scattering. J. Light. Technol. 2017, 35, 5237–5249. [Google Scholar] [CrossRef]
- Semrau, D.; Killey, R.I.; Bayvel, P. The Gaussian noise model in the presence of inter-channel stimulated Raman scattering. J. Light. Technol. 2018, 36, 3046–3055. [Google Scholar] [CrossRef]
- Shevchenko, N.A.; Nallaperuma, S.; Savory, S.J. Maximizing the information throughput of ultra-wideband fiber-optic communication systems. Opt. Express 2022, 30, 19320–19331. [Google Scholar] [CrossRef] [PubMed]
- Lasagni, C.; Serena, P.; Bononi, A.; Antona, J.C. A Generalized Raman Scattering Model for Real-Time SNR Estimation of Multi-Band Systems. J. Light. Technol. 2023; early access. [Google Scholar]
- Hamaoka, F.; Nakamura, M.; Okamoto, S.; Minoguchi, K.; Sasai, T.; Matsushita, A.; Yamazaki, E.; Kisaka, Y. Ultra-wideband WDM transmission in S-, C-, and L-bands using signal power optimization scheme. J. Light. Technol. 2019, 37, 1764–1771. [Google Scholar] [CrossRef]
- Correia, B.; Sadeghi, R.; Virgillito, E.; Napoli, A.; Costa, N.; Pedro, J.; Curri, V. Optical power control strategies for optimized C+ L+ S-bands network performance. In Optical Fiber Communication Conference; Optica Publishing Group: Washington, DC, USA, 2021; p. W1F-8. [Google Scholar]
- Correia, B.; Sadeghi, R.; Virgillito, E.; Napoli, A.; Costa, N.; Pedro, J.; Curri, V. Power control strategies and network performance assessment for C+ L+ S multiband optical transport. J. Opt. Commun. Netw. 2021, 13, 147–157. [Google Scholar] [CrossRef]
- Luo, H.; Lu, J.; Huang, Z.; Yu, C.; Lu, C. Optimization strategy of power control for C+ L+ S band transmission using a simulated annealing algorithm. Opt. Express 2022, 30, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Landero, S.E.; de Jauregui Ruiz, I.F.; Ferrari, A.; Le Gac, D.; Frignac, Y.; Charlet, G. Link Power Optimization for S+ C+ L Multi-band WDM Coherent Transmission Systems. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 24–28 March 2022; pp. 1–3. [Google Scholar]
- De Moura, U.C.; Iqbal, M.A.; Kamalian, M.; Krzczanowicz, L.; Da Ros, F.; Brusin, A.M.R.; Carena, A.; Forysiak, W.; Turitsyn, S.; Zibar, D. Multi–band programmable gain Raman amplifier. J. Light. Technol. 2020, 39, 429–438. [Google Scholar] [CrossRef]
- Agrawal, G.P. Lightwave Technology: Telecommunication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Carena, A.; Curri, V.; Bosco, G.; Poggiolini, P.; Forghieri, F. Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links. J. Light. Technol. 2012, 30, 1524–1539. [Google Scholar] [CrossRef]
- Semrau, D.; Sillekens, E.; Bayvel, P.; Killey, R.I. Modeling and mitigation of fiber nonlinearity in wideband optical signal transmission. J. Opt. Commun. Netw. 2020, 12, C68–C76. [Google Scholar] [CrossRef]
- Minoguchi, K.; Okamoto, S.; Hamaoka, F.; Matsushita, A.; Nakamura, M.; Yamazaki, E.; Kisaka, Y. Experiments on stimulated Raman scattering in S-and L-bands 16-QAM signals for ultra-wideband coherent WDM systems. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. Th1C-4. [Google Scholar]
- Saavedra, G.; Semrau, D.; Tan, M.; Iqbal, A.; Elson, D.J.; Galdino, L.; Harper, P.; Killey, R.I.; Bayvel, P. Inter-channel stimulated Raman scattering and its impact in wideband transmission systems. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
Reference | [13] | [16] | [15] | [17] | [10] | [11] | [12] | [14] |
---|---|---|---|---|---|---|---|---|
Capacity (Tbits/s) | - | ~35 | 46 | 99.35 | 115.9 | 150.3 | 178.08 | 256.4 |
Distance (km) | 60 | 70 | 10,072 | 257 | 100 | 40 | 40 | 54 |
Bandwidth (THz) | 23.5 | 25.8 | 15.1 | 12.33 | 12.7 | 13.6 | 16.83 | 19.8 |
WDM band | O, E, S, C, L | E, S, C, L | S, C, L | S, C, L | S, C, L | S, C, L | S, C, L | S, C, L |
Transmission fiber | LWPF | SSMF | SSMF | PSCF | SSMF | LWPF | Corning® SMF-28® ULL fiber | SSMF |
Amplifier | SOA PDFA TDFA EDFA | DRA BDFA TDFA EDFA | TDFA EDFA | SOA DRA | SOA | EDFA TDFA | EDFA TDFA | DRA TDFA EDFA |
Number of channels | 625 | 148 | 552 | 247 | 250 | 272 | 660 | 793 |
WDM spacing (GHz) | 37.5 | 100 | 25 | 50 | 50 | 100/50 | 25.5 | 25 |
Baud rate (Gbaud) | 32 | 30 | 24.5 | 49 | 49 | 45 | 25 | 24.5 |
Modulation format | QPSK 16QAM | 16QAM | QPSK | 16QAM PCS-64QAM | PCS-64QAM | 128QAM | GS-64QAM GS-256QAM GS-1024QAM | 256QAM |
Band | Wavelength (nm) | Frequency (THz) | Bandwidth (THz) | Nonlinear Coefficient (1/W/km) | Attenuation Coefficient (dB/km) | CD Coefficient (ps/nm/km) |
---|---|---|---|---|---|---|
O | 1260–1360 | 220.59–238.10 | 17.25 | 1.6 | 0.38–0.28 | −5–4 |
E | 1360–1460 | 205.48–220.59 | 14.81 | 1.5 | 0.28–0.22 | 4–12 |
S | 1460–1530 | 196.08–205.48 | 9.13 | 1.4 | 0.22–0.18 | 12–16 |
C | 1530–1565 | 191.69–196.08 | 4.13 | 1.3 | 0.18 | 16–18 |
L | 1565–1625 | 184.62–191.69 | 6.96 | 1.28 | 0.18 | 18–22 |
Parameter | Value | Parameter | Value |
---|---|---|---|
D | 30 | 1579 nm | |
m | 20 | 0.3 | |
10 | 1.5 | ||
−10 | 1.5 | ||
1250 nm | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Tian, F.; Wu, Y.; Yue, X.; Gu, Y.; Cui, Y.; Zhang, Q.; Ullah, R. Performance Analysis and Power Tilt Mitigation of Ultra-Wideband WDM Transmission Systems. Photonics 2023, 10, 530. https://doi.org/10.3390/photonics10050530
Wu T, Tian F, Wu Y, Yue X, Gu Y, Cui Y, Zhang Q, Ullah R. Performance Analysis and Power Tilt Mitigation of Ultra-Wideband WDM Transmission Systems. Photonics. 2023; 10(5):530. https://doi.org/10.3390/photonics10050530
Chicago/Turabian StyleWu, Tianze, Feng Tian, Yuyan Wu, Xiru Yue, Yu Gu, Yi Cui, Qi Zhang, and Rahat Ullah. 2023. "Performance Analysis and Power Tilt Mitigation of Ultra-Wideband WDM Transmission Systems" Photonics 10, no. 5: 530. https://doi.org/10.3390/photonics10050530
APA StyleWu, T., Tian, F., Wu, Y., Yue, X., Gu, Y., Cui, Y., Zhang, Q., & Ullah, R. (2023). Performance Analysis and Power Tilt Mitigation of Ultra-Wideband WDM Transmission Systems. Photonics, 10(5), 530. https://doi.org/10.3390/photonics10050530