Modulation Format Identification Based on Signal Constellation Diagrams and Support Vector Machine
Abstract
:1. Introduction
2. Theory and Principle
2.1. Extraction of Signal Constellation Diagram Features
2.2. MFI Classifier Based on SVM
3. Simulation Setup and Results
3.1. Simulation Setup
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mai, T.; Yao, H.; Zhang, N.; Xu, L.; Guizani, M.; Guo, S. Cloud Mining Pool Aided Blockchain-Enabled Internet of Things: An Evolutionary Game Approach. IEEE Trans. Cloud Comput. 2021, 1. [Google Scholar] [CrossRef]
- Gong, Y.; Yao, H.; Wang, J.; Li, M.; Guo, S. Edge Intelligence-driven Joint Offloading and Resource Allocation for Future 6G Industrial Internet of Things. IEEE Trans. Netw. Sci. Eng. 2022, 1. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, H.; Mai, T.; He, W.; Zhang, N.; Guizani, M. Multiagent Reinforcement-Learning-Aided Service Function Chain Deployment for Internet of Things. IEEE Internet Things J. 2022, 9, 15674–15684. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, J.; Mao, T.; Xu, C.; Zhang, R.; Han, Z.; Xia, X.G. LEO Satellite Access Network (LEO-SAN) Towards 6G: Challenges and Approaches. arXiv 2022, arXiv:2207.11896. [Google Scholar]
- Xiao, Z.; Han, Z.; Nallanathan, A.; Dobre, O.A.; Clerckx, B.; Choi, J.; He, C.; Tong, W. Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G. IEEE J. Sel. Areas Commun. 2022, 40, 2773–2804. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, S.; Tian, L.; He, F.; Liu, Z.; Tian, Q. Query-adaptive late fusion for image search and person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1741–1750. [Google Scholar] [CrossRef]
- Tan, M.C.; Khan, F.N.; Al-Arashi, W.H.; Zhou, Y.; Lau, A.P.T. Simultaneous optical performance monitoring and modulation format/bit-rate identification using principal component analysis. J. Opt. Commun. Netw. 2014, 6, 441–448. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, Q.; Xin, X.; Tian, Q.; Tian, F. Chirped anti-resonant reflecting optical waveguide for the distributed sensing of pressure. Opt. Lett. 2020, 45, 690–693. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Xin, X.; Gao, R.; Lv, K.; Tian, Q.; Tian, F.; Wang, C.; Pan, X.; Wang, Y.; et al. Robust and Low-Complexity Principal Component-Based Phase Estimation Algorithm for Probabilistically Shaped Square-QAM Systems. J. Light. Technol. 2020, 38, 6153–6162. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Xin, X.; Gao, R.; Tian, Q.; Tian, F.; Wang, C.; Pan, X.; Wang, Y.; Yang, L. Robust weighted K-means clustering algorithm for a probabilistic-shaped 64QAM coherent optical communication system. Opt. Express 2019, 27, 37601–37613. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, C.; Willner, A.E. Optical performance monitoring for the next generation optical communication networks. Opt. Fiber Technol. 2010, 16, 20–45. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, Y.; Zhang, C.; Liang, X.; Cui, M.; Qiu, K. Constellation Shaping Chaotic Encryption Scheme With Controllable Statistical Distribution for OFDM-PON. J. Light. Technol. 2022, 40, 14–23. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, C.; Chen, C.; Hou, H.; Wei, H.; Hu, S.; Qiu, K. Security enhancement for OFDM-PON using Brownian motion and chaos in cell. Opt. Express 2018, 26, 22857–22865. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Karasawa, Y. Robust Maximum Likelihood Classification of Quadrature Amplitude Modulation. In Proceedings of the 2010 IEEE Wireless Communication and Networking Conference, Sydney, Australia, 18–21 April 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Xu, J.L.; Su, W.; Zhou, M. Likelihood-Ratio Approaches to Automatic Modulation Classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2011, 41, 455–469. [Google Scholar] [CrossRef]
- Wei, W.; Mendel, J. Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans. Commun. 2000, 48, 189–193. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, D.; He, Z.; Zhang, N.; Zhang, X.; Zhang, H.; Li, Y. Identifying modulation formats through 2D Stokes planes with deep neural networks. Opt. Express 2018, 26, 23507–23517. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Li, J.; Li, Z.; Li, J.; Song, C.; Chen, X. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Opt. Express 2017, 25, 17150–17166. [Google Scholar] [CrossRef]
- Amiralizadeh, S.; Yekani, A.; Rusch, L.A. Discrete Multi-Tone Transmission With Optimized QAM Constellations for Short-Reach Optical Communications. J. Light. Technol. 2016, 34, 3515–3522. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Zhou, Y.; Sebdani, M.M.; Yao, Y.D. Modulation Classification Based on Signal Constellation Diagrams and Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 718–727. [Google Scholar] [CrossRef]
- Dehghani, N.; Kabir, E. A Multi-Focus Image Fusion Method based on Fractal Dimension and Guided Filtering. In Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milano, Italy, 10–15 January 2021; pp. 10697–10703. [Google Scholar] [CrossRef]
- Panigrahy, C.; Seal, A.; Mahato, N.K. Image texture surface analysis using an improved differential box counting based fractal dimension. Powder Technol. 2020, 364, 276–299. [Google Scholar] [CrossRef]
- Sarkar, N.; Chaudhuri, B. An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. 1994, 24, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Gao, G.; Hu, G.; Gao, B.; Gao, T.; Wei, W.; Wu, G. Aging feature extraction of oil-impregnated insulating paper using image texture analysis. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1636–1645. [Google Scholar] [CrossRef]
- Esmail, M.A.; Saif, W.S.; Ragheb, A.M.; Alshebeili, S.A. Free space optic channel monitoring using machine learning. Opt. Express 2021, 29, 10967–10981. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V. The Nature of Statistical Learning Theory. 1999. Available online: https://sc.panda321.com/extdomains/books.google.com/books?hl=zh-CN&lr=&id=sna9BaxVbj8C&oi=fnd&pg=PR7&dq=The+nature+of+statistical+learning+theory&ots=oqMdMYmseb&sig=EQHwTUw6dOVMai1hz8iq1eFwN4Y (accessed on 18 September 2022).
Parameter Type | Value |
---|---|
Central wavelength | 193.1 THZ |
Signal Rate | 30 GBaud |
Fiber input power | 10 dBm |
Optical amplifier | EDFA |
EDFA gain | 16 dB, 24 dB |
EDFA noise | 4 dB |
Fiber | SMF |
Fiber attenuation coefficient | 0.2 dB/km |
Fiber nonlinear coefficient | 1.31 (W·km) |
Fiber dispersion coefficient | 16.75 ps/(nm·km) |
Fiber distance | 80 km, 120 km |
OSNR range | 0 dB∼30 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Zhang, Q.; Xin, X.; Yao, H.; Gao, R.; Jiang, J.; Tian, F.; Liu, B.; Wang, F.; Tian, Q.; et al. Modulation Format Identification Based on Signal Constellation Diagrams and Support Vector Machine. Photonics 2022, 9, 927. https://doi.org/10.3390/photonics9120927
Huang Z, Zhang Q, Xin X, Yao H, Gao R, Jiang J, Tian F, Liu B, Wang F, Tian Q, et al. Modulation Format Identification Based on Signal Constellation Diagrams and Support Vector Machine. Photonics. 2022; 9(12):927. https://doi.org/10.3390/photonics9120927
Chicago/Turabian StyleHuang, Zhiqi, Qi Zhang, Xiangjun Xin, Haipeng Yao, Ran Gao, Jinkun Jiang, Feng Tian, Bingchun Liu, Fu Wang, Qinghua Tian, and et al. 2022. "Modulation Format Identification Based on Signal Constellation Diagrams and Support Vector Machine" Photonics 9, no. 12: 927. https://doi.org/10.3390/photonics9120927
APA StyleHuang, Z., Zhang, Q., Xin, X., Yao, H., Gao, R., Jiang, J., Tian, F., Liu, B., Wang, F., Tian, Q., Wang, Y., & Yang, L. (2022). Modulation Format Identification Based on Signal Constellation Diagrams and Support Vector Machine. Photonics, 9(12), 927. https://doi.org/10.3390/photonics9120927