An Orbital-Angular-Momentum- and Wavelength-Tunable 2 μm Vortex Laser
Abstract
:1. Introduction
2. Experiment Setup and Theoretical Analysis
2.1. Experiment Setup
2.2. Theoretical Analysis of Off-Axis Pumping
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuan, P.H.; Liang, H.C.; Huang, K.F.; Chen, Y.F. Realizing High-Pulse-Energy Large-Angular-Momentum Beams by Astigmatic Transformation of Geometric Modes in an Nd:YAG/Cr4+:YAG Laser. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 9. [Google Scholar] [CrossRef]
- Bandres, M.A.; Gutierrez-Vega, J.C. Ince-Gaussian modes of the paraxial wave equation and stable resonators. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2004, 21, 873–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramochkin, E.; Alieva, T. Closed-form expression for mutual intensity evolution of Hermite-Laguerre-Gaussian Schell-model beams. Opt. Lett. 2017, 42, 4032–4035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Simpson, N.B.; Dholakia, K.; Allen, L.; Padgett, M.J. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner. Opt. Lett. 1997, 22, 52–54. [Google Scholar] [CrossRef]
- Xie, G.D.; Song, H.Q.; Zhao, Z.; Milione, G.; Ren, Y.X.; Liu, C.; Zhang, R.Z.; Bao, C.J.; Li, L.; Wang, Z.; et al. Using a complex optical orbital-angular-momentum spectrum to measure object parameters. Opt. Lett. 2017, 42, 4482–4485. [Google Scholar] [CrossRef] [Green Version]
- Lavery, M.P.J.; Speirits, F.C.; Barnett, S.M.; Padgett, M.J. Detection of a Spinning Object Using Light’s Orbital Angular Momentum. Science 2013, 341, 537–540. [Google Scholar] [CrossRef] [Green Version]
- Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light-Sci. Appl. 2018, 7, 17146. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, J.T.; Wei, T.C.; Kwiat, P.G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 2008, 4, 282. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.X.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Richardson, D.J.; Fini, J.M.; Nelson, L.E. Space-division multiplexing in optical fibres. Nat. Photonics 2013, 7, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Ohtomo, T.; Chu, S.-C.; Otsuka, K. Generation of vortex beams from lasers with controlled Hermite- and Ince-Gaussian modes. Opt. Express 2008, 16, 5082–5094. [Google Scholar] [CrossRef]
- Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics 2016, 8, 200–227. [Google Scholar] [CrossRef]
- Bisson, J.F.; Senatsky, Y.; Ueda, K.-I. Generation of Laguerre-Gaussian modes in Nd:YAG laser using diffractive optical pumping. Laser Phys. Lett. 2005, 2, 327–333. [Google Scholar] [CrossRef]
- Yu-Feng, L.I.; You-Lun, J.U.; Bao-Quan, Y.; Yue-Zhu, W.; Ubizskii, S.J. A Laser-Diode-Pumped Widely Tunable Single-Longitude-Mode Tm:YAP Laser at Room Temperature. Chin. Phys. Lett 2007, 24, 2594–2596. [Google Scholar] [CrossRef]
- Sun, M.; Long, J.Y.; Li, X.H.; Liu, Y.; Ma, H.F.; An, Y.; Hu, X.H.; Wang, Y.S.; Li, C.; Shen, D.Y. Widely tunable Tm:LuYAG laser with a volume Bragg grating. Laser Phys. Lett. 2012, 9, 553–556. [Google Scholar] [CrossRef]
- Shen, Y.J.; Meng, Y.; Fu, X.; Gong, M.L. Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser. Opt. Lett. 2018, 43, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.J.; Yang, X.L.; Fu, X.; Gong, M.L. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator. Appl. Opt. 2018, 57, 9543–9549. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Zhao, Y.G.; Ding, M.M.; Yao, W.C.; Fan, X.L.; Shen, D.Y. Wavelength-and OAM-tunable vortex laser with a reflective volume Bragg grating. Opt. Express 2017, 25, 23312–23319. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.L.; Li, P.; Hao, M.H.; Yang, H.M.; Xie, J.; Feng, G.Y.; Zhou, S.H. Generation of wavelength- and OAM-tunable vortex beam at low threshold. Opt. Express 2018, 26, 18164–18170. [Google Scholar] [CrossRef]
- Liu, J.; Lin, J.; Chen, X.; Yu, Y.; Jin, G. A 1.9 μ m Tm: YLF external cavity mode conversion vortex laser based on LD off-axis pump. Opt. Commun. 2021, 482, 126596. [Google Scholar] [CrossRef]
- Zhao, X.M.; Liu, J.L.; Liu, M.M.; Li, R.B.; Zhang, L.; Jin, G.Y.; Chen, X.Y. Off-axis pumped Tm:YLF vortex laser with continuously tunable wavelength. Infrared Phys. Technol. 2022, 122, 104064. [Google Scholar] [CrossRef]
- Li, R.; Singh, U.N.; Walter, R.F.; Hu, J.; Gao, F.; Zhang, X.; Yuan, X. Theoretical study of transverse mode selection in laser resonator with volume Bragg gratings. In Proceedings of the High-Power Lasers and Applications VIII, SPIE/COS Photonics Asia, Beijing, China, 12–14 October 2016; Volume 10016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Liu, J.; Liu, M.; Li, R.; Zhang, L.; Chen, X. An Orbital-Angular-Momentum- and Wavelength-Tunable 2 μm Vortex Laser. Photonics 2022, 9, 926. https://doi.org/10.3390/photonics9120926
Zhao X, Liu J, Liu M, Li R, Zhang L, Chen X. An Orbital-Angular-Momentum- and Wavelength-Tunable 2 μm Vortex Laser. Photonics. 2022; 9(12):926. https://doi.org/10.3390/photonics9120926
Chicago/Turabian StyleZhao, Xinmiao, Jingliang Liu, Mingming Liu, Ruobing Li, Luan Zhang, and Xinyu Chen. 2022. "An Orbital-Angular-Momentum- and Wavelength-Tunable 2 μm Vortex Laser" Photonics 9, no. 12: 926. https://doi.org/10.3390/photonics9120926
APA StyleZhao, X., Liu, J., Liu, M., Li, R., Zhang, L., & Chen, X. (2022). An Orbital-Angular-Momentum- and Wavelength-Tunable 2 μm Vortex Laser. Photonics, 9(12), 926. https://doi.org/10.3390/photonics9120926