Nonlinear Impairment Compensation Using Transfer Learning-Assisted Convolutional Bidirectional Long Short-Term Memory Neural Network for Coherent Optical Communication Systems
Abstract
:1. Introduction
2. NLC Principle of Transfer Learning-Assisted CNN-BiLSTM Neural Network
2.1. Construction of Multidimensional Input Feature
2.2. Nonlinear Impairment Learning Principle Analysis of CNN-BiLSTM Structure
2.3. Transfer Learning Simplified CNN-BiLSTM Structure
3. Simulation System and Result Analysis
3.1. Description of the Simulation System
3.2. Results and Discussion
4. Experimental System and Result Analysis
4.1. Description of Experimental System
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winzer, P.J.; Neilson, D.T.; Chraplyvy, A.R. Fiber-optic transmission and networking: The previous 20 and the next 20 years [Invited]. Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef]
- Li, B.; Bai, C.; Xu, H.; Yang, L.; Sun, W.; Yu, X.; Zhao, R.; Zhou, T.; Ge, P.; Lv, X.; et al. A low complexity nonlinearity impairment compensation scheme assisted by label propagation algorithm. Opt. Commun. 2022, 506, 127547. [Google Scholar] [CrossRef]
- Vassilieva, O.; Kim, I.; Ikeuchi, T. Enabling Technologies for Fiber Nonlinearity Mitigation in High Capacity Transmission Systems. J. Lightwave Technol. 2019, 37, 50–60. [Google Scholar] [CrossRef]
- Ip, E.; Kahn, J.M. Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation. J. Lightwave Technol. 2008, 26, 3416–3425. [Google Scholar] [CrossRef]
- Guiomar, F.P.; Reis, J.D.; Teixeira, A.L.; Pinto, A.N. Digital Postcompensation Using Volterra Series Transfer Function. IEEE Photonics Technol. Lett. 2011, 23, 1412–1414. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, L.; Huang, Y.; Cui, K.; Xiong, Q.; Hauske, F.N.; Xie, C.; Cai, Y. Intrachannel Nonlinearity Compensation by Inverse Volterra Series Transfer Function. J. Lightwave Technol. 2012, 30, 310–316. [Google Scholar] [CrossRef]
- Liang, X.; Kumar, S. Multi-stage perturbation theory for compensating intra-channel nonlinear impairments in fiber-optic links. Opt. Express 2014, 22, 29733–29745. [Google Scholar] [CrossRef]
- Fu, M.; Wu, Y.; Yang, Z.; Lun, H.; Zeng, X.; Yi, L.; Hu, W.; Zhuge, Q. Low-Complexity Triplet-Correlative Perturbative Fiber Nonlinearity Compensation for Long-Haul Optical Transmission. J. Lightwave Technol. 2022, 40, 5416–5425. [Google Scholar] [CrossRef]
- Soman, S.K.O.; Amari, A.; Dobre, O.A.; Venkatesan, R. Second-Order Perturbation Theory-Based Digital Predistortion for Fiber Nonlinearity Compensation. J. Lightwave Technol. 2021, 39, 5474–5485. [Google Scholar] [CrossRef]
- Häger, C.; Pfister, H.D. Nonlinear Interference Mitigation via Deep Neural Networks. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Fan, Q.; Zhou, G.; Gui, T.; Lu, C.; Lau, A.P.T. Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning. Nat. Commun. 2020, 11, 3694. [Google Scholar] [CrossRef]
- Hager, C.; Pfister, H.D. Physics-Based Deep Learning for Fiber-Optic Communication Systems. IEEE J. Sel. Areas Commun. 2021, 39, 280–294. [Google Scholar] [CrossRef]
- Tang, D.; Wu, Z.; Sun, Z.; Tang, X.; Qiao, Y. Joint intra and inter-channel nonlinearity compensation based on interpretable neural network for long-haul coherent systems. Opt. Express 2021, 29, 36242–36256. [Google Scholar] [CrossRef]
- Li, P.; Yi, L.; Xue, L.; Hu, W. 56 Gbps IM/DD PON based on 10G-Class Optical Devices with 29 dB Loss Budget Enabled by Machine Learning. In Proceedings of the Optical Fiber Communication Conference(OFC), San Diego, CA, USA, 11–15 March 2018; p. M2B.2. [Google Scholar]
- Chuang, C.-Y.; Liu, L.-C.; Wei, C.-C.; Liu, J.-J.; Henrickson, L.; Huang, W.-J.; Wang, C.-L.; Chen, Y.-K.; Chen, J. Convolutional Neural Network based Nonlinear Classifier for 112-Gbps High Speed Optical Link. In Proceedings of the Optical Fiber Communication Conference(OFC), San Diego, CA, USA, 11–15 March 2018; p. W2A.43. [Google Scholar]
- Deligiannidis, S.; Bogris, A.; Mesaritakis, C.; Kopsinis, Y. Compensation of Fiber Nonlinearities in Digital Coherent Systems Leveraging Long Short-Term Memory Neural Networks. J. Lightwave Technol. 2020, 38, 5991–5999. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Wang, X.; Xu, H.; Li, C.; Xin, X. Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system. Opt. Express 2021, 29, 5923–5933. [Google Scholar] [CrossRef]
- Ming, H.; Chen, X.; Fang, X.; Zhang, L.; Li, C.; Zhang, F. Ultralow Complexity Long Short-Term Memory Network for Fiber Nonlinearity Mitigation in Coherent Optical Communication Systems. J. Lightwave Technol. 2022, 40, 2427–2434. [Google Scholar] [CrossRef]
- Zhang, S.; Yaman, F.; Nakamura, K.; Inoue, T.; Kamalov, V.; Jovanovski, L.; Vusirikala, V.; Mateo, E.; Inada, Y.; Wang, T. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks. Nat. Commun. 2019, 10, 3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; El-Sahn, Z.A.; Awadalla, A.; Yao, D.; Sun, H.; Mertz, P.; Wu, K.T. Reduced Complexity Nonlinearity Compensation via Principal Component Analysis and Deep Neural Networks. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- He, P.; Wu, F.; Yang, M.; Yang, A.; Guo, P.; Qiao, Y.; Xin, X. A Fiber Nonlinearity Compensation Scheme With Complex-Valued Dimension-Reduced Neural Network. IEEE Photonics J. 2021, 13, 7200507. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Wang, J.; Yao, H.; Liu, X.; Gao, R.; Yang, L.; Xu, H.; Zhang, Q.; Ma, P.; et al. Convolutional Neural Network-Aided DP-64 QAM Coherent Optical Communication Systems. J. Lightwave Technol. 2022, 40, 2880–2889. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Yang, T.; Wang, L.; Wang, D.; Zhang, Z.; Shi, S. Low-Complexity Fiber Nonlinearity Impairments Compensation Enabled by Simple Recurrent Neural Network With Time Memory. IEEE Access 2020, 8, 160995–161004. [Google Scholar] [CrossRef]
- Ding, J.; Liu, T.; Xu, T.; Hu, W.; Popov, S.; Leeson, M.S.; Zhao, J.; Xu, T. Intra-Channel Nonlinearity Mitigation in Optical Fiber Transmission Systems Using Perturbation-based Neural Network. J. Lightwave Technol. 2022, 40, 7106–7116. [Google Scholar] [CrossRef]
- Tao, Z.; Dou, L.; Yan, W.; Li, L.; Hoshida, T.; Rasmussen, J.C. Multiplier-Free Intrachannel Nonlinearity Compensating Algorithm Operating at Symbol Rate. J. Lightwave Technol. 2011, 29, 2570–2576. [Google Scholar] [CrossRef]
- Freire, P.J.; Osadchuk, Y.; Spinnler, B.; Napoli, A.; Schairer, W.; Costa, N.; Prilepsky, J.E.; Turitsyn, S.K. Performance Versus Complexity Study of Neural Network Equalizers in Coherent Optical Systems. J. Lightwave Technol. 2021, 39, 6085–6096. [Google Scholar] [CrossRef]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, E. LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Trans. Neural Netw. 2001, 12, 1333–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Xia, L.; Zhu, M.; Hu, S.; Xu, B.; Qiu, K. Fast remodeling for nonlinear distortion mitigation based on transfer learning. Opt. Lett. 2019, 44, 4243–4246. [Google Scholar] [CrossRef]
- Freire, P.J.; Abode, D.; Prilepsky, J.E.; Costa, N.; Spinnler, B.; Napoli, A.; Turitsyn, S.K. Transfer Learning for Neural Networks-Based Equalizers in Coherent Optical Systems. J. Lightwave Technol. 2021, 39, 6733–6745. [Google Scholar] [CrossRef]
NLC Scheme | RMPS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DBP [18] | / | / | / | / | / | / | 20/5 | 20 | 2 | 118,400/29,600 | 1.08/0.59 |
0.71/0.49 | |||||||||||
SRNN [23] | 218 | / | / | / | 120/90 | 2 | / | / | / | 42,544/29,644 | 0.99/0.95 |
0.43/0.42 | |||||||||||
CNN-BiLSTM | 138 | 11 | 25/17 | 11 | 10 | 2 | / | / | / | 41,954/29,170 | 1.36/1.14 |
0.70/0.47 | |||||||||||
218 | 11 | 25/17 | 11 | 10 | 2 | / | / | / | 64,594/44,770 | 1.62/1.44 | |
0.72/0.48 | |||||||||||
338 | 11 | 25/17 | 11 | 10 | 2 | / | / | / | 98,554/68,170 | 1.97/1.57 | |
0.77/0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Bai, C.; Chi, X.; Xu, H.; Fan, Y.; Yang, L.; Qin, P.; Wang, Z.; Lv, X. Nonlinear Impairment Compensation Using Transfer Learning-Assisted Convolutional Bidirectional Long Short-Term Memory Neural Network for Coherent Optical Communication Systems. Photonics 2022, 9, 919. https://doi.org/10.3390/photonics9120919
Luo X, Bai C, Chi X, Xu H, Fan Y, Yang L, Qin P, Wang Z, Lv X. Nonlinear Impairment Compensation Using Transfer Learning-Assisted Convolutional Bidirectional Long Short-Term Memory Neural Network for Coherent Optical Communication Systems. Photonics. 2022; 9(12):919. https://doi.org/10.3390/photonics9120919
Chicago/Turabian StyleLuo, Xueyuan, Chenglin Bai, Xinyu Chi, Hengying Xu, Yaxuan Fan, Lishan Yang, Peng Qin, Zhiguo Wang, and Xiuhua Lv. 2022. "Nonlinear Impairment Compensation Using Transfer Learning-Assisted Convolutional Bidirectional Long Short-Term Memory Neural Network for Coherent Optical Communication Systems" Photonics 9, no. 12: 919. https://doi.org/10.3390/photonics9120919
APA StyleLuo, X., Bai, C., Chi, X., Xu, H., Fan, Y., Yang, L., Qin, P., Wang, Z., & Lv, X. (2022). Nonlinear Impairment Compensation Using Transfer Learning-Assisted Convolutional Bidirectional Long Short-Term Memory Neural Network for Coherent Optical Communication Systems. Photonics, 9(12), 919. https://doi.org/10.3390/photonics9120919