Nonlinear Optical Response of Dispersed Medium Based on Conjugates Single-Walled Carbon Nanotubes with Phthalocyanines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization
2.2. Characterisation of Composites
2.3. NLO Studies
3. Results and Discussion
3.1. Spectral Properties of Dye 2
3.2. SEM Study
3.3. Dynamic Light Scattering
3.4. NLO Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertolotti, M. The History of the Laser; CRC Press: Boca Raton, FL, USA, 2004; p. 316. [Google Scholar] [CrossRef]
- Acherjee, B. Hybrid laser arc welding: State-of-art review. Opt. Laser Technol. 2018, 99, 60–71. [Google Scholar] [CrossRef]
- Zhang, Q.; Lee, Y.H.; Phang, I.Y.; Lee, C.K.; Ling, X.Y. Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles. Small 2014, 10, 2703–2711. [Google Scholar] [CrossRef]
- Khalkhal, E.; Rezaei-Tavirani, M.; Zali, M.R.; Akbari, Z. The evaluation of laser application in surgery: A review article. J. Lasers Med. Sci. 2019, 10, S104. [Google Scholar] [CrossRef]
- Amann, M.C.; Bosch, T.M.; Lescure, M.; Myllylae, R.A.; Rioux, M. Laser ranging: A critical review of unusual techniques for distance measurement. Opt. Eng. 2001, 40, 10–19. [Google Scholar] [CrossRef]
- Raj, T.; Hanim Hashim, F.; Baseri Huddin, A.; Ibrahim, M.F.; Hussain, A. A survey on LiDAR scanning mechanisms. Electronics 2020, 9, 741. [Google Scholar] [CrossRef]
- Geis, M.W.; Bos, P.J.; Liberman, V.; Rothschild, M. Broadband optical switch based on liquid crystal dynamic scattering. Opt. Express 2016, 24, 13812–13823. [Google Scholar] [CrossRef]
- Barkana, Y.; Belkin, M. Laser eye injuries. Surv. Ophthalmol. 2000, 44, 459–478. [Google Scholar] [CrossRef]
- Ivanov, I.V.; Mappes, T.; Schaupp, P.; Lappe, C.; Wahl, S. Ultraviolet radiation oxidative stress affects eye health. J. Biophotonics 2018, 11, 201700377. [Google Scholar] [CrossRef]
- Dini, D.; Calvete, M.J.F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233. [Google Scholar] [CrossRef]
- Kaniyarakkal, S.; Thomas, T.; Sadagopalan, S.K.; Jayamohan, L.; Muralimanohar, R.; Vasanthakumaryamma, L.; Sadasivan Nair, V. Synthesis, Linear and Nonlinear Optical Properties of Ag/Al2O3 Nanocomposites. Materials 2022, 15, 6322. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y. Nonlinear optical properties of metal nanoparticles: A review. RSC Adv. 2017, 7, 45129–45144. [Google Scholar] [CrossRef]
- Yahya, M.; Nural, Y.; Seferoğlu, Z. Recent advances in the nonlinear optical (NLO) properties of phthalocyanines: A review. Dyes Pigment. 2022, 198, 109960. [Google Scholar] [CrossRef]
- Nancy, P.; Joy, N.; Valluvadasan, S.; Philip, R.; Thomas, S.; Antoine, R.; Kalarikkal, N. Fluorescence and Nonlinear Optical Response of Graphene Quantum Dots Produced by Pulsed Laser Irradiation in Toluene. Molecules 2022, 27, 7988. [Google Scholar] [CrossRef]
- Gadhwal, R.; Devi, A. A review on the development of optical limiters from homogeneous to reflective 1-D photonic crystal structures. Opt. Laser Technol. 2021, 141, 107144. [Google Scholar] [CrossRef]
- Nancy, P.; Jose, J.; Joy, N.; Valluvadasan, S.; Philip, R.; Antoine, R.; Thomas, S.; Kalarikkal, N. Fabrication of silver-decorated graphene oxide nanohybrids via pulsed laser ablation with excellent antimicrobial and optical limiting performance. Nanomaterials 2021, 11, 880. [Google Scholar] [CrossRef]
- Rahman, S.; Mirza, S.; Sarkar, A.; Rayfield, G.W. Design and evaluation of carbon nanotube based optical power limiting materials. J. Nanosci. Nanotechnol. 2010, 10, 4805–4823. [Google Scholar] [CrossRef]
- Sani, E.; Papi, N.; Mercatelli, L.; Barison, S.; Agresti, F.; Rossi, S.; Dell’Oro, A. Optical limiting of carbon nanohorn-based aqueous nanofluids: A systematic study. Nanomaterials 2020, 10, 2160. [Google Scholar] [CrossRef]
- Stavrou, M.; Panacek, D.; Bakandritsos, A.; Couris, S. N-Doped Graphene and N-Doped Graphene Acid: Heteroatom Doping for Very Efficient Broad-Band Optical Limiting Performance from UV to NIR. J. Phys. Chem. C 2022, 126, 14339–14345. [Google Scholar] [CrossRef]
- Dissanayake, D.A.S.; Cifuentes, M.P.; Humphrey, M.G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coord. Chem. Rev. 2018, 375, 489–513. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Guo, G.Y.; Chu, K.C.; Wang, D.S.; Duan, C.G. Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys. Rev. B 2004, 69, 205416. [Google Scholar] [CrossRef]
- Fashina, A.; Nyokong, T. Nonlinear optical response of tetra and mono substituted zinc phthalocyanine complexes. J. Lumin. 2015, 167, 71–79. [Google Scholar] [CrossRef]
- Tolbin, A.Y.; Tomilova, L.G.; Zefirov, N.S. Non-symmetrically substituted phthalocyanines: Synthesis and structure modification. Russ. Chem. Rev. 2007, 76, 681–692. [Google Scholar] [CrossRef]
- Zu, Y.; He, C.; Liu, D.; Chen, L. Synthesis of hybrid structures based on metal phthalocyanines/graphene oxide towards nonlinear optical applications. Dyes Pigment. 2020, 173, 107841. [Google Scholar] [CrossRef]
- Kuzmina, E.A.; Dubinina, T.V.; Vasilevsky, P.N.; Saveliev, M.S.; Gerasimenko, A.Y.; Borisova, N.E.; Tomilova, L.G. Novel octabromo-substituted lanthanide (III) phthalocyanines–Prospective compounds for nonlinear optics. Dyes Pigment. 2021, 185, 108871. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, Z.; Chen, J.; Zhou, Y.; Zhang, F. Nonlinear optical and optical limiting properties of polymeric carboxyl phthalocyanine coordinated with rare earth atom. Opt. Mater. 2017, 66, 98–105. [Google Scholar] [CrossRef]
- Erdem, M.; Korkmaz, E.; Kösoğlu, G.; Ahmetali, E.; Farajzadeh, N.; Eryürek, G.; Koçak, M.B. Nonlinear optical behavior and optical power limiting characteristics of peripheral symmetrical and non-symmetrical zinc phthalocyanines with nanosecond pulsed excitation. Polyhedron 2021, 195, 114975. [Google Scholar] [CrossRef]
- Yadi, M.; Karimzadeh, R.; Abbasi, A. Effect of treatment by electrostatic field and 532-nm laser irradiation on optical and thermo-optical properties of graphene oxide colloids. J. Mater. Sci. 2017, 52, 4532–4542. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, X.-Q.; Ma, Q.; Yao, J.; Zhang, X.-L.; Liu, Z.-B.; Tian, J.-G. Nonlinear optical and optical limiting properties of graphene hybrids covalently functionalized by phthalocyanine. Chem. Phys. Lett. 2013, 577, 62–67. [Google Scholar] [CrossRef]
- Sanusi, K.; Khene, S.; Nyokong, T. Enhanced optical limiting performance in phthalocyanine-quantum dot nanocomposites by free-carrier absorption mechanism. Opt. Mater. 2014, 37, 572–582. [Google Scholar] [CrossRef]
- Nwaji, N.; Mack, J.; Nyokong, T. Enhanced nonlinear optical response of benzothiazole substituted ball-type phthalocyanines in the presence of metallic nanoparticles. Opt. Mater. 2018, 82, 93–103. [Google Scholar] [CrossRef]
- Tolbin, A.Y.; Shestov, V.I.; Savelyev, M.S.; Gerasimenko, A.Y. Deviation from Beer’s law and relationship of aggregation with the effective TPA coefficient: UV-vis studies on a series of low symmetry monophthalocyanines bearing a cyclotriphosphazene substituent. New J. Chem. 2023, 47, 1165–1173. [Google Scholar] [CrossRef]
- Savelyev, M.S.; Gerasimenko, A.Y.; Podgaetskii, V.M.; Tereshchenko, S.A.; Selishchev, S.V.; Tolbin, A.Y. Conjugates of thermally stable phthalocyanine J-type dimers with single-walled carbon nanotubes for enhanced optical limiting applications. Opt. Laser Technol. 2019, 117, 272–279. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Liu, X.F.; Zhang, Q.; Tian, G.L.; Huang, J.Q.; Zhu, W.; Wei, F. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano 2012, 6, 10759–10769. [Google Scholar] [CrossRef]
- Rozhin, A.G.; Sakakibara, Y.; Tokumoto, M.; Kataura, H.; Achiba, Y. Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film. Thin Solid Films 2004, 464, 368–372. [Google Scholar] [CrossRef]
- Wang, J.; Blau, W.J. Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes. App. Phys. B 2008, 91, 521–524. [Google Scholar] [CrossRef]
- Shi, J.; Chu, H.; Li, Y.; Zhang, X.; Pan, H.; Li, D. Synthesis and nonlinear optical properties of semiconducting single-walled carbon nanotubes at 1 μm. Nanoscale 2019, 11, 7287–7292. [Google Scholar] [CrossRef]
- Wang, A.; Du, X.; Yin, Y.; Shen, X.; Cheng, L.; Zhu, W.; Shang, D. Nonlinear optical modification of single-walled carbon nanotube by decorating with metal and metal-free porphyrins. Diam. Relat. Mater. 2020, 106, 107838. [Google Scholar] [CrossRef]
- Tune, D.D.; Blanch, A.J.; Krupke, R.; Flavel, B.S.; Shapter, J.G. Nanotube film metallicity and its effect on the performance of carbon nanotube–silicon solar cells. Phys. Status Solidi 2014, 211, 1479–1487. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Kharlamova, M.V.; Paukov, M.; Burdanova, M.G. Nanotube Functionalization: Investigation, Methods and Demonstrated Applications. Materials 2022, 15, 5386. [Google Scholar] [CrossRef] [PubMed]
- Vasilevsky, P.N.; Savelyev, M.S.; Tereshchenko, S.A.; Selishchev, S.V.; Gerasimenko, A.Y. Nonlinear optical properties of single-walled carbon nanotubes/water dispersed media exposed to laser radiation with nano- and femtosecond pulse durations. Condens. Matter Interphases 2021, 23, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Corletto, A.; Hosseinmardi, A.; Annamalai, P.K.; Martin, D.J.; Shapter, J.G. High-Resolution R2R-Compatible Printing of Carbon Nanotube Conductive Patterns Enabled by Cellulose Nanocrystals. ACS Appl. Nano Mater. 2022, 5, 1574–1587. [Google Scholar] [CrossRef]
- Park, J.; Deria, P.; Olivier, J.H.; Therien, M.J. Fluence-dependent singlet exciton dynamics in length-sorted chirality-enriched single-walled carbon nanotubes. Nano Lett. 2014, 14, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Tereshchenko, S.A.; Savelyev, M.S.; Podgaetsky, V.M.; Gerasimenko, A.Y.; Selishchev, S.V. Nonlinear threshold effect in the Z-scan method of characterizing limiters for high-intensity laser light. J. App. Phys. 2016, 120, 093109. [Google Scholar] [CrossRef]
- Lu, C.; Xuan, H.; Zhou, Y.; Xu, X.; Zhao, Q.; Bai, J. Saturable and reverse saturable absorption in molybdenum disulfide dispersion and film by defect engineering. Photonics Res. 2020, 8, 1512–1521. [Google Scholar] [CrossRef]
- Varma, S.J.; Kumar, J.; Liu, Y.; Layne, K.; Wu, J.; Liang, C.; Nakanishi, Y.; Aliyan, A.; Yang, W.; Ajayan, P.M.; et al. 2D TiS2 layers: A superior nonlinear optical limiting material. Adv. Opt. Mater. 2017, 5, 1700713. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Y.; Liu, Y.; Doyle, J.; He, N.; Zhuang, X.; Bai, J.; Blau, W.J. Carbon nanotube-based functional materials for optical limiting. J. Nanosci. Nanotechnol. 2007, 7, 1268–1283. [Google Scholar] [CrossRef]
- Wang, J.; Blau, W.J. Solvent effect on optical limiting properties of single-walled carbon nanotube dispersions. J. Phys. Chem. C 2008, 112, 2298–2303. [Google Scholar] [CrossRef]
- Gounden, D.; Nombona, N.; Van Zyl, W.E. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord. Chem. Rev. 2020, 420, 213359. [Google Scholar] [CrossRef]
- Murakami, N.; Miyake, H.; Tajima, T.; Nishikawa, K.; Hirayama, R.; Takaguchi, Y. Enhanced photosensitized hydrogen production by encapsulation of ferrocenyl dyes into single-walled carbon nanotubes. J. Am. Chem. Soc. 2018, 140, 3821–3824. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Li, Y.; Wang, C.; Zhang, H.; Li, D. Recent investigations on nonlinear absorption properties of carbon nanotubes. Nanophotonics 2020, 9, 761–781. [Google Scholar] [CrossRef]
Solvent | Type of Particles | Hydrodynamic Radius, nm | Standard Deviation, nm | Contribution, % |
---|---|---|---|---|
Water | Separated nanoparticles | 347 | 55 | 31 |
Agglomerates | 21,000 | 8700 | 69 | |
DMF | Separated nanoparticles | 342 | 52 | 92 |
Agglomerates | 15,000 | 3800 | 8 | |
DMSO | Separated nanoparticles | 352 | 60 | 93 |
Agglomerates | 17,000 | 5600 | 7 |
Nanoparticles | Solvent | Linear Transmittance, % | Linear Absorption Coefficient, cm−1 | Third-Order Nonlinear Optical Absorption Coefficient, cm/GW | Limiting Threshold, J/cm2 | Attenuation Coefficient |
---|---|---|---|---|---|---|
Initial SWCNT | Water | 64.5 ± 0.5 | 1.47 ± 0.02 | 76 ± 4 | 0.20 ± 0.03 | 3.15 ± 0.15 |
DMF | 63.9 ± 0.5 | 1.50 ± 0.02 | 108 ± 4 | 0.17 ± 0.02 | 3.80 ± 0.15 | |
DMSO | 64.1 ± 0.5 | 1.49 ± 0.02 | 105 ± 4 | 0.17± 0.02 | 3.79 ± 0.15 | |
(OH)4PcHH | Water | Not soluble | ||||
DMF | 44.8 ± 0.5 | 2.69 ± 0.03 | 10 ± 1 | 0.75 ± 0.03 | 1.11 ± 0.02 | |
DMSO | 45.1 ± 0.5 | 2.67 ± 0.03 | 6 ± 1 | 0.85 ± 0.03 | 1.20 ± 0.04 | |
Composites (OH)4PcHH @ SWCNT | Water | 64.5 ± 0.5 | 1.47 ± 0.02 | 149 ± 5 | 0.09 ± 0.02 | 4.95 ± 0.15 |
DMF | 63.6 ± 0.5 | 1.52 ± 0.03 | 236 ± 6 | 0.05 ± 0.02 | 6.52 ± 0.15 | |
DMSO | 63.8 ± 0.5 | 1.51 ± 0.02 | 229 ± 6 | 0.06 ± 0.02 | 6.51 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilevsky, P.N.; Savelyev, M.S.; Tolbin, A.Y.; Kuksin, A.V.; Vasilevskaya, Y.O.; Orlov, A.P.; Shaman, Y.P.; Dudin, A.A.; Pavlov, A.A.; Gerasimenko, A.Y. Nonlinear Optical Response of Dispersed Medium Based on Conjugates Single-Walled Carbon Nanotubes with Phthalocyanines. Photonics 2023, 10, 537. https://doi.org/10.3390/photonics10050537
Vasilevsky PN, Savelyev MS, Tolbin AY, Kuksin AV, Vasilevskaya YO, Orlov AP, Shaman YP, Dudin AA, Pavlov AA, Gerasimenko AY. Nonlinear Optical Response of Dispersed Medium Based on Conjugates Single-Walled Carbon Nanotubes with Phthalocyanines. Photonics. 2023; 10(5):537. https://doi.org/10.3390/photonics10050537
Chicago/Turabian StyleVasilevsky, Pavel N., Mikhail S. Savelyev, Alexander Yu. Tolbin, Artem V. Kuksin, Yulia O. Vasilevskaya, Andrey P. Orlov, Yury P. Shaman, Alexander A. Dudin, Alexander A. Pavlov, and Alexander Yu. Gerasimenko. 2023. "Nonlinear Optical Response of Dispersed Medium Based on Conjugates Single-Walled Carbon Nanotubes with Phthalocyanines" Photonics 10, no. 5: 537. https://doi.org/10.3390/photonics10050537
APA StyleVasilevsky, P. N., Savelyev, M. S., Tolbin, A. Y., Kuksin, A. V., Vasilevskaya, Y. O., Orlov, A. P., Shaman, Y. P., Dudin, A. A., Pavlov, A. A., & Gerasimenko, A. Y. (2023). Nonlinear Optical Response of Dispersed Medium Based on Conjugates Single-Walled Carbon Nanotubes with Phthalocyanines. Photonics, 10(5), 537. https://doi.org/10.3390/photonics10050537