Reflection Interference Spectroscopy Technology Monitoring the Synthesis of ZnCl2-ZnO Nanosheets on Nanoporous Anodic Alumina Substrate in Real Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of (ZnCl2-ZnO)/NpAA Film
2.3. Characterization
2.4. RIfS Experimental Setup
3. Results and Discussion
3.1. Morphology, Structure, and Composition of the Film
3.2. Factors Affecting the Configuration of (ZnCl2-ZnO)/NpAA Composite Film
3.2.1. Synthesis Time
3.2.2. Concentrations of ZnCl2 Precursor Solution
4. Conclusions
- (1)
- The EOT − t curve can be divided into three stages as follows: slow decrease, fast decrease, and steady, which correspond to the three growth states of the film.
- (2)
- According to the characteristic curves, the end time of film synthesis can be judged, generally, as follows: the smaller the concentration, the shorter the forming time.
- (3)
- There are significant differences in the trends of EOT − t curves of the films synthesized with different concentrations of precursor solutions, such as 0.05 M, 0.07 M, 0.085 M, or 0.1 M. Then, the concentration ranges of the precursor solutions can be sensitively distinguished based on the curve trends.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hermans, S.; Marien, H.; Van Goethem, C.; Vankelecom, I. Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration. Curr. Opin. Chem. Eng. 2015, 8, 45–54. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Mohamed, A.; Abdelgawad, A.M.; Eid, K.; Abdullah, A.M.; Elzatahry, A. The Recent Advances in the Mechanical Properties of Self-Standing Two-Dimensional MXene-Based Nanostructures: Deep Insights into the Supercapacitor. Nanomaterials 2020, 10, 1916. [Google Scholar] [CrossRef] [PubMed]
- He, H.R.; Wang, X.; Xu, P.; Ma, S.Q.; Peng, H.N.; Wang, D.M.; Zhou, H.W.; Chen, C.H. Flower-like MnO2 nanoparticles modified thin film nanocomposite membranes for efficient organic solvent nanofiltration. Comp. Commun. 2023, 38, 101515. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, X.Y.; Ma, X.H.; Zhou, Z.W.; Guo, H.; Yao, Z.K.; Feng, S.P.; Tang, C. Fabrication of a novel and green thin-film composite membrane containing nanovoids for water purification. J. Membrane Sci. 2019, 570, 314–321. [Google Scholar] [CrossRef]
- Khlyustova, A.; Cheng, Y.F.; Yang, R. Vapor-deposited functional polymer thin films in biological applications. J. Mater. Chem. B 2020, 8, 6588–6609. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Tzounis, L.; Mountakis, N.; Boura, O.; Grammatikos, S.A. Multi-functional polyamide 12 (PA12)/multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties. Adv. Compos. Mater. 2022, 31, 630–654. [Google Scholar] [CrossRef]
- Ali, A.H.; Hassan, A.S.; Ahmed, A.M.; Abdel-Khaliek, A.A.; Abd El Khalik, S.; Abass, S.M.; Shaban, M.; Alzahrani, F.M.; Rabia, M. Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency. Photonics 2022, 9, 979. [Google Scholar] [CrossRef]
- Yadav, H.M.; Park, J.D.; Kang, H.C.; Lee, J.J. Recent Development in Nanomaterial-Based Electrochemical Sensors for Cholesterol Detection. Chemosensors 2021, 9, 98. [Google Scholar] [CrossRef]
- Kononova, S.V.; Gubanova, G.N.; Korytkova, E.N.; Sapegin, D.A.; Setnickova, K.; Petrychkovych, R.; Uchytil, P. Polymer Nanocomposite Membranes. Appl. Sci. 2018, 8, 1181. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, aab0530. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, L.Y.; Hao, T.T.; Liang, R.R.; Ye, H.T.; Li, J.J.; Gu, C.Z. Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology. Chin. Phys. B 2022, 31, 016801. [Google Scholar] [CrossRef]
- Najma, B.; Kasi, A.K.; Kasi, J.K.; Akbar, A.; Bokhari, S.; Stroe, I. ZnO/AAO photocatalytic membranes for efficient water disinfection: Synthesis, characterization and antibacterial assay. Appl. Surf. Sci. 2018, 448, 104–114. [Google Scholar] [CrossRef]
- Dumee, L.F.; Maina, J.W.; Merenda, A.; Reis, R.; He, L.; Kong, L.X. Hybrid thin film nano-composite membrane reactors for simultaneous separation and degradation of pesticides. J. Membrane Sci. 2017, 528, 217–224. [Google Scholar] [CrossRef]
- Zhang, X.H.; Li, Z.Q.; Ding, Y.; Hu, L.H.; Ye, J.J.; Pan, X.; Dai, S.Y. Highly efficient and stable perovskite solar cell prepared from an in situ pre-wetted PbI2 nano-sheet array film. Sustain. Energ. Fuels 2017, 1, 1056–1064. [Google Scholar] [CrossRef]
- Zakaria, A.; Leszczynska, D. Electrochemically Prepared Unzipped Single Walled Carbon Nanotubes-MnO2 Nanostructure Composites for Hydrogen Peroxide and Glucose Sensing. Chemosensors 2019, 7, 1. [Google Scholar] [CrossRef]
- Song, H.Y.; Ni, Y.N.; Kokot, S. A novel electrochemical biosensor based on the hemin-graphene nano-sheets and gold nano-particles hybrid film for the analysis of hydrogen peroxide. Anal. Chim. Acta 2013, 788, 24–31. [Google Scholar] [CrossRef]
- Kometani, R.; Ishihara, S.; Kaito, T.; Matsui, S. In-situ observation of the three-dimensional nano-structure growth on focused-lon-beam chemical vapor deposition by scanning electron microscope. Appl. Phys. Express 2008, 1, 055001. [Google Scholar] [CrossRef]
- Janovak, L.; Dekany, I.; Sebok, D. The Theoretical Concept of Polarization Reflectometric Interference Spectroscopy (PRIFS): An Optical Method to Monitor Molecule Adsorption and Nanoparticle Adhesion on the Surface of Thin Films. Photonics 2019, 6, 76. [Google Scholar] [CrossRef]
- Fechner, P.; Gauglitz, G.; Proll, G. Through the looking-glass- Recent developments in reflectometry open new possibilities for biosensor applications. Trac-Trend Anal. Chem. 2022, 156, 116708. [Google Scholar] [CrossRef]
- Chu, B.Y.; Chui, H.C.; Hsu, C.R.; Chung, C.K. Characteristic Resonance Reflection Spectra of Nanoporous Alumina Films and Its Application to Precise Thickness Measurement. Ecs J. Solid State Sci. Technol. 2017, 6, N92–N96. [Google Scholar] [CrossRef]
- Kumar, D.N.; Pinker, N.; Shtenberg, G. Inflammatory biomarker detection in milk using label-free porous SiO2 interferometer. Talanta 2020, 220, 121439. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Y.; Li, Z.; Luo, Q.H.; Liu, J.Q.; Wu, J.M. Bacteria detection based on its blockage effect on silicon nanopore array. Biosens. Bioelectron 2016, 79, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, M.A.; Ferre-Borrull, J.; Marsal, L.F. Highly sensitive aptasensor based on interferometric reflectance spectroscopy for the determination of amyloid beta as an Alzheimer’s disease biomarkers using nanoporous anodic alumina. Biosens. Bioelectron 2019, 137, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Mariani, S.; Robbiano, V.; Strambini, L.M.; Debrassi, A.; Egri, G.; Dahne, L.; Barillaro, G. Layer-by-layer biofunctionalization of nanostructured porous silicon for high-sensitivity and high-selectivity label-free affinity biosensing. Nat. Commun. 2018, 9, 5256. [Google Scholar] [CrossRef]
- Schafer, J.; Forster, L.; Mey, I.; Papadopoulos, T.; Brose, N.; Steinem, C. Neuroligin-2 dependent conformational activation of collybistin reconstituted in supported hybrid membranes. J. Biol. Chem. 2020, 295, 18604–18613. [Google Scholar] [CrossRef]
- Wu, Q.Q.; Wang, K.G.; Sun, D.; Wang, S.; Zhang, C.; Zhao, W. Pairing Mismatched ssDNA to dsDNA Studied with Reflectometric Interference Spectroscopy Sensor. Chin. Phys. Lett. 2016, 33, 088701. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, D.; Wang, K.G.; Bai, X.H.; Zhang, C.; Zhao, W.; Feng, X.Q.; Bai, J.T. Label-free detecting oligonucleotide hybridization melting temperature in real-time with a reflectometric interference spectroscopy-based nanosensor system. Optik 2019, 192, 162903. [Google Scholar] [CrossRef]
- Sedighi, M.; Rahimi, F.; Rezayan, A.H.; Shahbazi, M.A.; Witzigmann, D.; Huwyler, J. Combined cerium oxide nanocapping and layer-by-layer coating of porous silicon containers for controlled drug release. J. Mater. Sci. 2018, 53, 14975–14988. [Google Scholar] [CrossRef]
- Heuer, C.; Leonard, H.; Nitzan, N.; Lavy-Alperovitch, A.; Massad-Ivanir, N.; Scheper, T.; Segal, E. Antifungal Susceptibility Testing of Aspergillus niger on Silicon Microwells by Intensity-Based Reflectometric Interference Spectroscopy. Acs Infect. Dis. 2020, 6, 2560–2566. [Google Scholar] [CrossRef]
- Koukouvinos, G.; Petrou, P.; Misiakos, K.; Drygiannakis, D.; Raptis, I.; Stefanitsis, G.; Martini, S.; Nikita, D.; Goustouridis, D.; Moser, I.; et al. Simultaneous determination of CRP and D-dimer in human blood plasma samples with White Light Reflectance Spectroscopy. Biosens. Bioelectron. 2016, 84, 89–96. [Google Scholar] [CrossRef]
- Kaur, S.; Law, C.S.; Williamson, N.H.; Kempson, I.; Popat, A.; Kumeria, T.; Santos, A. Environmental Copper Sensor Based on Polyethylenimine-Functionalized Nanoporous Anodic Alumina Interferometers. Anal. Chem. 2019, 91, 5011–5020. [Google Scholar] [CrossRef] [PubMed]
- Kumeria, T.; Parkinson, L.; Losic, D. A nanoporous interferometric micro-sensor for biomedical detection of volatile sulphur compounds. Nanoscale Res. Lett. 2011, 6, 634. [Google Scholar] [CrossRef]
- Kumeria, T.; Losic, D. Reflective interferometric gas sensing using nanoporous anodic aluminium oxide (AAO). Phys. Status Solidi-R 2011, 5, 406–408. [Google Scholar] [CrossRef]
- Kumeria, T.; Santos, A.; Losic, D. Ultrasensitive Nanoporous Interferornetric Sensor for Label-Free Detection of Gold(III) Ions. Acs Appl. Mater. Inter. 2013, 5, 11783–11790. [Google Scholar] [CrossRef]
- Pacholski, C.; Sartor, M.; Sailor, M.J.; Cunin, F.; Miskelly, G.M. Biosensing using porous silicon double-layer interferometers: Reflective interferometric Fourier transform spectroscopy. J. Am. Chem. Soc. 2005, 127, 11636–11645. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Bajaj, B.; Kaushik, A.; Saini, A.; Sud, D. A review on template assisted synthesis of multi-functional metal oxide nanostructures: Status and prospects. Mater. Sci. Eng. B-Adv. 2022, 286, 116005. [Google Scholar] [CrossRef]
- Pligovka, A.; Hoha, A.; Turavets, U.; Poznyak, A.; Zakharau, Y. Formation features, morphology and optical properties of nanostructures via anodizing Al/Nb on Si and glass. Mater. Today: Proc. 2021, 37, A8–A15. [Google Scholar] [CrossRef]
- Hao, B.J.; Wang, K.G.; Zhou, Y.K.; Sui, C.F.; Wang, L.; Bai, R.; Yang, Z.J. Label-Free Detecting of the Compaction and Decompaction of ctDNA Molecules Induced by Surfactants with SERS Based on a nanoPAA-ZnCl2-AuLs Solid Substrate. Acs Omega 2020, 5, 1109–1119. [Google Scholar] [CrossRef]
- Sui, C.F.; Wang, K.G.; Wang, S.; Ren, J.Y.; Bai, X.H.; Bai, J.T. SERS activity with tenfold detection limit optimization on a type of nanoporous AAO-based complex multilayer substrate. Nanoscale 2016, 8, 5920–5927. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, K.G.; Zhou, Y.K.; Sun, D.; Zhang, C.; Zhao, W.; Bai, J.T. Enhanced degradation effect of nano-PAA-CuCl2 with controllable 3D structure as heterogeneous Fenton-like catalyst over a wide pH range. J. Mater. Sci. 2019, 54, 7850–7866. [Google Scholar] [CrossRef]
- Poznyak, A.; Pligovka, A.; Turavets, U.; Norek, M. On-Aluminum and Barrier Anodic Oxide: Meeting the Challenges of Chemical Dissolution Rate in Various Acids and Solutions. Coatings 2020, 10, 875. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Dang, Y.; Wang, K.G.; Zhao, W.; Zhang, C.; Jiao, Y.; Feng, X.Q.; Wang, G.R.; Shen, T.H. A Stable NanoPAA-ZnO/ZnCl2 Composite with Variable 3D Structured Morphology and Sustained Superhydrophilicity. Langmuir 2021, 37, 5457–5463. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Z.; Dang, Y.; Zhu, J.; Zheng, J.; Zhang, C.; Zhao, W.; Wang, K. Reflection Interference Spectroscopy Technology Monitoring the Synthesis of ZnCl2-ZnO Nanosheets on Nanoporous Anodic Alumina Substrate in Real Time. Photonics 2023, 10, 552. https://doi.org/10.3390/photonics10050552
Gong Z, Dang Y, Zhu J, Zheng J, Zhang C, Zhao W, Wang K. Reflection Interference Spectroscopy Technology Monitoring the Synthesis of ZnCl2-ZnO Nanosheets on Nanoporous Anodic Alumina Substrate in Real Time. Photonics. 2023; 10(5):552. https://doi.org/10.3390/photonics10050552
Chicago/Turabian StyleGong, Ziyi, Yang Dang, Jie Zhu, Jiming Zheng, Chen Zhang, Wei Zhao, and Kaige Wang. 2023. "Reflection Interference Spectroscopy Technology Monitoring the Synthesis of ZnCl2-ZnO Nanosheets on Nanoporous Anodic Alumina Substrate in Real Time" Photonics 10, no. 5: 552. https://doi.org/10.3390/photonics10050552
APA StyleGong, Z., Dang, Y., Zhu, J., Zheng, J., Zhang, C., Zhao, W., & Wang, K. (2023). Reflection Interference Spectroscopy Technology Monitoring the Synthesis of ZnCl2-ZnO Nanosheets on Nanoporous Anodic Alumina Substrate in Real Time. Photonics, 10(5), 552. https://doi.org/10.3390/photonics10050552