Morphology Engineering for High-Q Plasmonic Surface Lattice Resonances with Large Field Enhancement
Abstract
:1. Introduction
2. Result and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Numerical Method
References
- Beeram, R.; Vepa, K.R.; Soma, V.R. Recent trends in SERS-based plasmonic sensors for disease diagnostics, biomolecules detection, and machine learning techniques. Biosensors 2023, 13, 328. [Google Scholar] [CrossRef]
- Danilov, A.; Tselikov, G.; Wu, F.; Kravets, V.G.; Ozerov, I.; Bedu, F.; Grigorenko, A.N.; Kabashin, A.V. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. Biosens. Bioelectron. 2018, 104, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Feng, L.; Huo, P.; Liu, M.; Huang, C.; Yan, F.; Lu, Y.Q.; Xu, T. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol. 2023, 18, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Beiranvand, B.; Khabibullin, R.A.; Sobolev, A.S. Local field enhancement due to the edge states of nanoplasmonic crystal. Photonics 2023, 10, 263. [Google Scholar] [CrossRef]
- Zhao, T.; Meng, D.; Hu, Z.; Sun, W.; Ji, Y.; Han, J.; Jin, X.; Wu, X.; Duan, P. Enhanced chiroptic properties of nanocomposites of achiral plasmonic nanoparticles decorated with chiral dye-loaded micelles. Nat. Commun. 2023, 14, 81. [Google Scholar] [CrossRef]
- Rong, K.; Gan, F.; Shi, K.; Chu, S.; Chen, J. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides. Adv. Mater. 2018, 30, 1706546. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, C.; Huang, Y.Z.; Zhang, Q. Plasmonic nanolasers in on-chip light sources: Prospects and challenges. ACS Nano 2020, 14, 14375–14390. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, P.; Wang, W.; Zhang, X.; Kuo, H.C.; Xu, H.; Wang, Z.M. High-Q Plasmonic Resonances: Fundamentals and Applications. Adv. Opt. Mater. 2021, 9, 2001520. [Google Scholar] [CrossRef]
- Bin-Alam, M.S.; Reshef, O.; Mamchur, Y.; Alam, M.Z.; Carlow, G.; Upham, J.; Sullivan, B.T.; Ménard, J.M.; Huttunen, M.J.; Boyd, R.W.; et al. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun. 2021, 12, 974. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, J.M.; Moilanen, A.J.; Rekola, H.; Kuntze, K.; Priimagi, A.; Torma, P.; Hakala, T.K. All-optical emission control and lasing in plasmonic lattices. ACS Photonics 2020, 7, 2850–2858. [Google Scholar] [CrossRef]
- Fang, X.; Xiong, L.; Shi, J.; Li, G. High-Q quadrupolar plasmonic lattice resonances in horizontal metal–insulator–metal gratings. Opt. Lett. 2021, 46, 1546–1549. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef]
- Cuartero-González, A.; Sanders, S.; Zundel, L.; Fernández-Domínguez, A.I.; Manjavacas, A. Super-and subradiant lattice resonances in bipartite nanoparticle arrays. ACS Nano 2020, 14, 11876–11887. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Guo, Z.; Zhao, X.; Wang, F.; Yu, Z.; Chen, Y.; Liu, Z.; Zhang, S.; Sun, S.; Wu, X. Dual-Quasi Bound States in the Continuum Enabled Plasmonic Metasurfaces. Adv. Opt. Mater. 2022, 10, 2200965. [Google Scholar] [CrossRef]
- Zhu, X.; Imran Hossain, G.M.; George, M.; Farhang, A.; Cicek, A.; Yanik, A.A. Beyond noble metals: High Q-factor aluminum nanoplasmonics. ACS Photonics 2020, 7, 416–424. [Google Scholar] [CrossRef]
- Le-Van, Q.; Zoethout, E.; Geluk, E.J.; Ramezani, M.; Berghuis, M.; Gómez Rivas, J. Enhanced quality factors of surface lattice resonances in plasmonic arrays of nanoparticles. Adv. Opt. Mater. 2019, 7, 1801451. [Google Scholar] [CrossRef]
- Wang, D.; Guan, J.; Hu, J.; Bourgeois, M.R.; Odom, T.W. Manipulating light–matter interactions in plasmonic nanoparticle lattices. Acc. Chem. Res. 2019, 52, 2997–3007. [Google Scholar] [CrossRef]
- Reshef, O.; Saad-Bin-Alam, M.; Huttunen, M.J.; Carlow, G.; Sullivan, B.T.; Ménard, J.M.; Dolgaleva, K.; Boyd, R.W. Multiresonant high-Q plasmonic metasurfaces. Nano Lett. 2019, 19, 6429–6434. [Google Scholar] [CrossRef]
- Guan, J.; Sagar, L.K.; Li, R.; Wang, D.; Bappi, G.; Wang, W.; Watkins, N.; Bourgeois, M.R.; Levina, L.; Fan, F.; et al. Quantum dot-plasmon lasing with controlled polarization patterns. ACS Nano 2020, 14, 3426–3433. [Google Scholar] [CrossRef]
- Yu, H.; Peng, Y.; Yang, Y.; Li, Z.Y. Plasmon-enhanced light–matter interactions and applications. npj Comput. Mater. 2019, 5, 45. [Google Scholar] [CrossRef]
- Stolt, T.; Vesala, A.; Rekola, H.; Karvinen, P.; Hakala, T.K.; Huttunen, M.J. Multiply-resonant second-harmonic generation using surface lattice resonances in aluminum metasurfaces. Opt. Express 2022, 30, 3620–3631. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.M.; Ruckriegel, M.J.; Rojo, H.; Keitel, R.C.; De Leo, E.; Rabouw, F.T.; Norris, D.J. Dual-wavelength lasing in quantum-dot plasmonic lattice lasers. ACS Nano 2020, 14, 5223–5232. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bourgeois, M.R.; Guan, J.; Fumani, A.K.; Schatz, G.C.; Odom, T.W. Lasing from finite plasmonic nanoparticle lattices. ACS Photonics 2020, 7, 630–636. [Google Scholar] [CrossRef]
- Movsesyan, A.; Besteiro, L.V.; Kong, X.T.; Wang, Z.; Govorov, A.O. Engineering strongly chiral plasmonic lattices with achiral unit cells for sensing and photodetection. Adv. Opt. Mater. 2022, 10, 2101943. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Wang, T.Q.; Zhao, W.M.; Yin, X.Y.; Jiang, J.X.; Zhang, S.S. Plasmonic crescent nanoarray-based surface lattice resonance sensor with a high figure of merit. Nanoscale 2022, 14, 6144–6151. [Google Scholar] [CrossRef]
- Chang, K.H.; Cheng, J.S.; Lu, T.W.; Lee, P.T. Engineering surface lattice resonance of elliptical gold nanodisk array for enhanced strain sensing. Opt. Express 2018, 26, 33215–33225. [Google Scholar] [CrossRef]
- Hooper, D.C.; Kuppe, C.; Wang, D.; Wang, W.; Guan, J.; Odom, T.W.; Valev, V.K. Second harmonic spectroscopy of surface lattice resonances. Nano Lett. 2018, 19, 165–172. [Google Scholar] [CrossRef]
- Chen, S.; Reineke, B.; Li, G.; Zentgraf, T.; Zhang, S. Strong nonlinear optical activity induced by lattice surface modes on plasmonic metasurface. Nano Lett. 2019, 19, 6278–6283. [Google Scholar] [CrossRef]
- Beer, S.; Gour, J.; Alberucci, A.; David, C.; Nolte, S.; Zeitner, U.D. Second harmonic generation under doubly resonant lattice plasmon excitation. Opt. Express 2022, 30, 40884–40896. [Google Scholar] [CrossRef]
- Michaeli, L.; Keren-Zur, S.; Avayu, O.; Suchowski, H.; Ellenbogen, T. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays. Phys. Rev. Lett. 2017, 118, 243904. [Google Scholar] [CrossRef]
- Liu, W.; Lee, B.; Naylor, C.H.; Ee, H.S.; Park, J.; Johnson, A.C.; Agarwal, R. Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett. 2016, 16, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Shepard, G.D.; Ardelean, J.V.; Rhodes, D.A.; Kim, B.; Barmak, K.; Hone, J.C.; Strauf, S. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 2018, 13, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Y.; Zheng, B.; Hwang, M.; Ji, Z.; Liu, G.; Li, Z.; Sorger, V.J.; Pan, A.; Agarwal, R. Observation and active control of a collective polariton mode and polaritonic band gap in few-layer WS2 strongly coupled with plasmonic lattices. Nano Lett. 2019, 20, 790–798. [Google Scholar] [CrossRef]
- Dombi, P.; Pápa, Z.; Vogelsang, J.; Yalunin, S.V.; Sivis, M.; Herink, G.; Schäfer, S.; Groß, P.; Ropers, C.; Lienau, C. Strong-field nano-optics. Rev. Mod. Phys. 2020, 92, 025003. [Google Scholar] [CrossRef]
- Forn-Díaz, P.; Lamata, L.; Rico, E.; Kono, J.; Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys. 2019, 91, 025005. [Google Scholar] [CrossRef]
- Lin, Q.Y.; Li, Z.; Brown, K.A.; O’Brien, M.N.; Ross, M.B.; Zhou, Y.; Butun, S.; Chen, P.C.; Schatz, G.C.; Dravid, V.P.; et al. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett. 2015, 15, 4699–4703. [Google Scholar] [CrossRef]
- Suh, J.Y.; Kim, C.H.; Zhou, W.; Huntington, M.D.; Co, D.T.; Wasielewski, M.R.; Odom, T.W. Plasmonic bowtie nanolaser arrays. Nano Lett. 2012, 12, 5769–5774. [Google Scholar] [CrossRef]
- Kauranen, M.; Zayats, A.V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748. [Google Scholar] [CrossRef]
- Noordam, M.; Hernandez-Rueda, J.; Talsma, L.; Kuipers, L. Plasmon-induced enhancement of nonlinear optical processes in a double-resonant metallic nanostructure grating. Appl. Phys. Lett. 2020, 116, 101101. [Google Scholar] [CrossRef]
- Lin, L.; Xue, J.; Xu, H.; Zhao, Q.; Zhang, W.; Zheng, Y.; Wu, L.; Zhou, Z.K. Integrating lattice and gap plasmonic modes to construct dual-mode metasurfaces for enhancing light–matter interaction. Sci. China Mater. 2021, 64, 3007–3016. [Google Scholar] [CrossRef]
- Shen, Q.; Jin, W.; Yang, G.; Rodriguez, A.W.; Mikkelsen, M.H. Active control of multiple, simultaneous nonlinear optical processes in plasmonic nanogap cavities. ACS Photonics 2020, 7, 901–907. [Google Scholar] [CrossRef]
- Chen, J.; Gan, F.; Wang, Y.; Li, G. Plasmonic Sensing and Modulation Based on Fano Resonances. Adv. Opt. Mater. 2018, 6, 1701152. [Google Scholar] [CrossRef]
- Elshorbagy, M.H.; Cuadrado, A.; González, G.; González, F.J.; Alda, J. Performance improvement of refractometric sensors through hybrid plasmonic–fano resonances. J. Light. Technol. 2019, 37, 2905–2913. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Chen, Y.; Liu, Y.; Li, P.; Wang, Z.; Zhu, X.; Bi, K.; Duan, H. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling. Nanoscale 2020, 12, 9776–9785. [Google Scholar] [CrossRef] [PubMed]
- Cherqui, C.; Bourgeois, M.R.; Wang, D.; Schatz, G.C. Plasmonic surface lattice resonances: Theory and computation. Acc. Chem. Res. 2019, 52, 2548–2558. [Google Scholar] [CrossRef]
- Manjavacas, A.; Zundel, L.; Sanders, S. Analysis of the limits of the near-field produced by nanoparticle arrays. ACS Nano 2019, 13, 10682–10693. [Google Scholar] [CrossRef]
- Baur, S.; Sanders, S.; Manjavacas, A. Hybridization of lattice resonances. ACS Nano 2018, 12, 1618–1629. [Google Scholar] [CrossRef]
- Yao, X.; Jiang, S.; Luo, S.; Liu, B.W.; Huang, T.X.; Hu, S.; Zhu, J.; Wang, X.; Ren, B. Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition. ACS Appl. Mater. Interfaces 2020, 12, 36505–36512. [Google Scholar] [CrossRef]
Size [nm] | Monomer | Dimer | ||
---|---|---|---|---|
No Gap | 10 nm | 30 nm | 50 nm | |
Disk | ||||
Cuboid | ||||
Triangular Prism |
Cross-Section Area [] | Monomer | Dimer | ||
---|---|---|---|---|
No Gap | 10 nm | 30 nm | 50 nm | |
Disk | 24,328.49 | 19,006.64 | 28,205.21 | 33,943.34 |
Cuboid | 18,632.00 | 14,450.00 | 21,218.00 | 25,538.00 |
Triangular Prism | 9832.40 | 8739.93 | 12,730.57 | 14,809.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Xue, J.; Pan, Z.; Ou, C.; Dong, H.; Meng, Z.; Zhou, J. Morphology Engineering for High-Q Plasmonic Surface Lattice Resonances with Large Field Enhancement. Photonics 2023, 10, 570. https://doi.org/10.3390/photonics10050570
Pan H, Xue J, Pan Z, Ou C, Dong H, Meng Z, Zhou J. Morphology Engineering for High-Q Plasmonic Surface Lattice Resonances with Large Field Enhancement. Photonics. 2023; 10(5):570. https://doi.org/10.3390/photonics10050570
Chicago/Turabian StylePan, Haoxian, Jiancai Xue, Zhihui Pan, Cuiyu Ou, Huafeng Dong, Ziming Meng, and Jinyun Zhou. 2023. "Morphology Engineering for High-Q Plasmonic Surface Lattice Resonances with Large Field Enhancement" Photonics 10, no. 5: 570. https://doi.org/10.3390/photonics10050570
APA StylePan, H., Xue, J., Pan, Z., Ou, C., Dong, H., Meng, Z., & Zhou, J. (2023). Morphology Engineering for High-Q Plasmonic Surface Lattice Resonances with Large Field Enhancement. Photonics, 10(5), 570. https://doi.org/10.3390/photonics10050570