Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating
Abstract
:1. Introduction
2. Device Schematic and Operation Principle
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitris, S.; Moralis-Pegios, M.; Alexoudi, T.; Ban, Y.; De Heyn, P.; Van Campenhout, J.; Lambrecht, J.; Ramon, H.; Yin, X.; Bauwelinck, J.; et al. O-Band Silicon Photonic Transmitters for Datacom and Computercom Interconnects. J. Light. Technol. 2019, 37, 5140–5148. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Xiao, X.; Xu, H.; Pan, B. Silicon photonics for high-capacity data communications. Photon. Res. 2022, 10, A106–A134. [Google Scholar] [CrossRef]
- Li, H.; Casper, B.; Balamurugan, G.; Sakib, M.; Sun, J.; Driscoll, J.; Kumar, R.; Jayatilleka, H.; Rong, H.; Jaussi, J. A 112 Gb/s PAM4 Silicon Photonics Transmitter With Microring Modulator and CMOS Driver. J. Light. Technol. 2020, 38, 131–138. [Google Scholar] [CrossRef]
- Ferrotti, T.; Chantre, A.; Blampey, B.; Duprez, H.; Milesi, F.; Myko, A.; Sciancalepore, C.; Hassan, K.; Harduin, J.; Baudot, C.; et al. Power-efficient carrier-depletion SOI Mach-Zehnder modulators for 4x25Gbit/s operation in the O-band. In Silicon Photonics X; SPIE: Bellingham, WA, USA, 2015. [Google Scholar]
- Stojanović, V.; Ram, R.J.; Popović, M.; Lin, S.; Moazeni, S.; Wade, M.; Sun, C.; Alloatti, L.; Atabaki, A.; Pavanello, F.; et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited]. Opt. Express 2018, 26, 13106–13121. [Google Scholar] [CrossRef]
- Giewont, K.; Hu, S.; Peng, B.; Rakowski, M.; Rauch, S.; Rosenberg, J.C.; Sahin, A.; Stobert, I.; Stricker, A.; Nummy, K.; et al. 300-Mm Monolithic Silicon Photonics Foundry Technology. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–11. [Google Scholar] [CrossRef]
- Gupta, R.K.; Chandran, S.; Das, B.K. Wavelength-Independent Directional Couplers for Integrated Silicon Photonics. J. Light. Technol. 2017, 35, 4916–4923. [Google Scholar] [CrossRef]
- Peter, E.; Thomas, A.; Dhawan, A.; Sarangi, S.R. Active microring based tunable optical power splitters. Opt. Commun. 2016, 359, 311–315. [Google Scholar] [CrossRef]
- Chen, S.; Shi, Y.; He, S.; Dai, D. Low-Loss and Broadband 2 × 2 Silicon Thermo-Optic Mach–Zehnder Switch with Bent Directional Couplers. Opt. Lett. 2016, 41, 836–839. [Google Scholar] [CrossRef]
- Jain, S.; Rajput, S.; Kaushik, V.; Kumar, M. High speed optical modulator based on silicon slotted-rib waveguide. Opt. Commun. 2019, 434, 49–53. [Google Scholar] [CrossRef]
- Barrios, C.; de Almeida, V.; Lipson, M. Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator. J. Light. Technol. 2003, 21, 1089–1098. [Google Scholar] [CrossRef]
- Horst, F.; Green, W.M.; Assefa, S.; Shank, S.M.; Vlasov, Y.A.; Offrein, B.J. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express 2013, 21, 11652–11658. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Ying, Z.; Zhao, Z.; Gu, J.; Pan, D.Z.; Chen, R.T. Wavelength-division-multiplexing (WDM)-based integrated electronic–photonic switching network (EPSN) for high-speed data processing and transportation. Nanophotonics 2020, 9, 4579–4588. [Google Scholar] [CrossRef]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef] [PubMed]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Totovic, A.; Giamougiannis, G.; Tsakyridis, A.; Lazovsky, D.; Pleros, N. Programmable photonic neural networks combining WDM with coherent linear optics. Sci. Rep. 2022, 12, 5605. [Google Scholar] [CrossRef]
- Moralis-Pegios, M.; Mourgias-Alexandris, G.; Tsakyridis, A.; Giamougiannis, G.; Totovic, A.; Dabos, G.; Passalis, N.; Kirtas, M.; Rutirawut, T.; Gardes, F.Y.; et al. Neuromorphic Silicon Photonics and Hardware-Aware Deep Learning for High-Speed Inference. J. Light. Technol. 2022, 40, 3243–3254. [Google Scholar] [CrossRef]
- Han, L.; Kuo, B.P.-P.; Alic, N.; Radic, S. Ultra-broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y-branch. Opt. Express 2018, 26, 14800–14809. [Google Scholar] [CrossRef]
- Chen, W.; Lin, J.; Li, H.; Wang, P.; Dai, S.; Liu, Y.; Yao, R.; Li, J.; Fu, Q.; Dai, T.; et al. Broadband multimode 3 dB optical power splitter using tapered couplers. Opt. Express 2022, 30, 46236. [Google Scholar] [CrossRef]
- Hu, M.; Huang, J.; Scarmozzino, R.; Levy, M.; Osgood, R. A low-loss and compact waveguide Y-branch using refractive-index tapering. IEEE Photon. Technol. Lett. 1997, 9, 203–205. [Google Scholar] [CrossRef]
- Kim, H.; Shin, H. Tailorable and Broadband On-Chip Optical Power Splitter. Appl. Sci. 2019, 9, 4239. [Google Scholar] [CrossRef]
- Lu, Z.; Yun, H.; Wang, Y.; Chen, Z.; Zhang, F.; Jaeger, N.A.F.; Chrostowski, L. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt. Express 2015, 23, 3795–3808. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chiang, K.S. Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches. Opt. Lett. 2017, 42, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chao, Q.; Huang, H.; Zhao, Y.; Li, Y.; Tao, L.; She, X.; Liao, H.; Huang, R.; Zhu, Z.; et al. Compact, broadband, and low-loss silicon photonic arbitrary ratio power splitter using adiabatic taper. Appl. Opt. 2021, 60, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Alam, S.; Zhang, J.; Zhu, M.; Koh, P.-C.; Plant, D.V.; Wang, Y.; El-Fiky, E.; Xu, L.; Kumar, A.; et al. Adiabatic Coupler With Design-Intended Splitting Ratio. J. Light. Technol. 2019, 37, 6147–6155. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Kumar, A.; El-Fiky, E.; Mao, D.; Tamazin, H.; Jacques, M.; Xing, Z.; Saber, G.; Plant, D.V. Compact high-performance adiabatic 3-dB coupler enabled by subwavelength grating slot in the silicon-on-insulator platform. Opt. Express 2018, 26, 29873–29885. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, W.; Chen, J.; Ding, Z.; Shi, Y. Broadband Arbitrary Ratio Power Splitters Based on Directional Couplers With Subwavelength Structure. IEEE Photon. Technol. Lett. 2021, 33, 479–482. [Google Scholar] [CrossRef]
- Ramadan, T.; Scarmozzino, R.; Osgood, R. Adiabatic couplers: Design rules and optimization. J. Light. Technol. 1998, 16, 277–283. [Google Scholar] [CrossRef]
- Yun, H.; Chrostowski, L.; Jaeger, N.A.F. Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelength-grating-assisted silicon-on-insulator strip waveguides. Opt. Lett. 2018, 43, 1935–1938. [Google Scholar] [CrossRef]
- Papadovasilakis, M.; Chandran, S.; Gebregiorgis, Y.; Bian, Y.; Rakowski, M.; Krishnamurthy, S.; Aboketaf, A.; Augur, R.; Viegas, J. Fabrication tolerant and wavelength independent arbitrary power splitters on a monolithic silicon photonics platform. Opt. Express 2022, 30, 33780–33791. [Google Scholar] [CrossRef]
Symbol | Value | Symbol | Value |
---|---|---|---|
Wc | 0.12 μm | Lt | 15 μm |
W1 | 0.61 μm | Lc | 20 μm |
W2 | 0.35 μm | Lp | 0.1 μm |
W3 | 0.48 μm | Λ | 0.2 μm |
W4 | 0.48 μm | G | 0.1 μm |
Ls | 10 μm |
Splitting Ratio | W4 (nm) | Lc (μm) | Wc (nm) |
---|---|---|---|
50%:50% | 480 | 11 | 115 |
60%:40% | 473 | 16 | 115 |
70%:30% | 466 | 15 | 105 |
80%:20% | 457 | 14 | 110 |
90%:10% | 444 | 14 | 115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhao, Y.; Sheng, Z.; Gan, F. Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating. Photonics 2023, 10, 578. https://doi.org/10.3390/photonics10050578
Liu X, Zhao Y, Sheng Z, Gan F. Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating. Photonics. 2023; 10(5):578. https://doi.org/10.3390/photonics10050578
Chicago/Turabian StyleLiu, Xiang, Yingxuan Zhao, Zhen Sheng, and Fuwan Gan. 2023. "Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating" Photonics 10, no. 5: 578. https://doi.org/10.3390/photonics10050578
APA StyleLiu, X., Zhao, Y., Sheng, Z., & Gan, F. (2023). Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating. Photonics, 10(5), 578. https://doi.org/10.3390/photonics10050578