Background Rejection in Two-Photon Fluorescence Image Scanning Microscopy
Abstract
:1. Introduction
2. Integrated Intensity, Optical Sectioning and Background
3. Improving Optical Sectioning
- A.
- If the pixels are reassigned to bring the defocused peaks to the center, then the FWHM of the axial cross-section through the 3D PSF is improved by 6.2% () compared with unity for nonconfocal 2PE, and its smallest negative value is <.
- B.
- If, on the other hand, the annulus is reassigned with a PRF of 2/3, the improvement in axial FWHM is < () but the negative excursion is only .
- C.
- For , the improvement in axial FWHM is (), and the negative excursion is .
- D.
- For , corresponding to full-field 2PE, the improvement in axial FWHM is (), and the negative excursion is .
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Sheppard, C.J.R.; Choudhury, A. Image formation in the scanning microscope. Opt. Acta 1977, 24, 1051–1073. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Wilson, T. Depth of field in the scanning microscope. Opt. Lett. 1978, 3, 115–117. [Google Scholar] [CrossRef]
- Gu, M.; Sheppard, C.J.R. Effects of finite-sized detector on the OTF of confocal fluorescent microscopy. Optik 1991, 89, 65–69. [Google Scholar]
- Tortarolo, G.; Zunino, A.; Fersini, F.; Castello, M.; Piazza, S.; Sheppard, C.J.R.; Bianchini, P.; Diaspro, A.; Koho, S.V.; Vicidomini, G. Focus-ISM for sharp and gentle super-resolved microscopy. Nat. Commun. 2022, 13, 7723. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Castello, M.; Tortarolo, G.; Zunino, A.; Slenders, E.; Bianchini, P.; Vicidomini, G.; Diaspro, A. Signal strength and integrated intensity in confocal and image scanning microscopy. J. Opt. Soc. Am. A 2023, 40, 138–148. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Kompfner, R. Resonant scanning optical microscope. Appl. Opt. 1978, 17, 2879–2882. [Google Scholar] [CrossRef]
- Denk, W.; Strickler, J.H.; Webb, W.W. Two-photon laser scanning flourescence microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-M.; Fraser, S.E. The resolution improvement in two-photon laser scanning microscopy. In OSA Annual Meeting; Optical Society of America: Washington, DC, USA, 1997; p. 154. [Google Scholar]
- Gauderon, R.; Lukins, P.B.; Sheppard, C.J.R. Effect of a confocal pinhole in two-photon microscopy. Microsc. Res. Tech. 1999, 47, 210–214. [Google Scholar] [CrossRef]
- Song, W.; Lee, J.; Kwon, H.-K. Enhancement of imaging depth of two-photon microscopy using pinholes: Analytical simulation and experiments. J. Opt. Soc. Am. A 2012, 20, 20605–20622. [Google Scholar] [CrossRef]
- Theer, P.; Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A 2006, 23, 3139–3149. [Google Scholar] [CrossRef]
- Ingaramo, M.; York, A.G.; Wawrzusin, P.; Milberg, O.; Hong, A.; Weigert, R.; Shroff, H.; Patterson, G.H. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc. Natl. Acad. Sci. USA 2014, 111, 5254–5259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregor, I.; Spieker, M.; Petrovsky, R.; Grosshans, J.; Ros, R.; Enderlein, J. Rapid nonlinear image scanning microscopy. Nat. Methods 2017, 14, 1087–1089. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, S.; Wang, W.; Zhang, Z.; Kuang, C.F.; Liu, X. Improving the resolution of two-photon microscopy using pixel reassignment. Appl. Opt. 2018, 57, 6181–6187. [Google Scholar] [CrossRef]
- Koho, S.V.; Slenders, E.; Tortarolo, G.; Castello, M.; Buttafava, M.; Villa, F.; Tcarenkova, E.; Ameloot, M.; Bianchini, P.; Sheppard, C.J.R.; et al. Two-photon image scanning microscopy with SPAD array and blind image reconstruction. Biomed. Opt. Express 2020, 11, 2905–2924. [Google Scholar] [CrossRef] [PubMed]
- Tzang, O.; Feldkhun, D.; Agrawal, A.; Jesacher, A.; Piestun, R. Two-photon PSF-engineered image scanning microscopy. Opt. Lett. 2014, 44, 895–898. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Super-resolution in confocal imaging. Optik 1988, 80, 53–54. [Google Scholar]
- Müller, C.B.; Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 2010, 104, 198101. [Google Scholar] [CrossRef]
- Schulz, O.; Pieper, C.; Clever, M.; Pfaff, J.; Ruhlandt, A.; Kehlenbach, R.H.; Wouters, F.; Grosshans, J.; Bunt, G.; Enderlein, J. Resolution doubling in fuorescence microscopy with confocal spinning-disk image scanning microscope. Proc. Natl. Acad. Sci. USA 2013, 33, 21000–21005. [Google Scholar] [CrossRef] [Green Version]
- Huff, J. The Airyscan detector from ZEISS: Confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods 2015, 12, i–ii. [Google Scholar] [CrossRef]
- Castello, M.; Tortarolo, G.; Buttafava, M.; Deguchi, T.; Villa, F.; Koho, S.; Pesce, L.; Oneto, M.; Pelicci, S.; Lanzano, L.; et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods 2019, 16, 175–178. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Mehta, S.B.; Heintzmann, R. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 2013, 38, 2889–2892. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R. The development of microscopy for super-resolution: Confocal microscopy, and image scanning microscopy. Appl. Sci. 2021, 11, 8981. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Castello, M.; Tortarolo, G.; Deguchi, T.; Koho, S.V.; Vicidomini, G.; Diaspro, A. Pixel reassignment in image scanning microscopy: A re-evaluation. J. Opt. Soc. Am. A 2020, 35, 154–162. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Pixel reassignment in image scanning microscopy with a doughnut beam: Example of maximum likelihood restoration. J. Opt. Soc. Am. A 2021, 38, 1075–1084. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Structured illumination microscopy (SIM) and image scanning microscopy (ISM): A review and comparison of imaging properties. Phil. Trans. Royal Soc. A 2022, 76, 379. [Google Scholar]
- Sheppard, C.J.R.; Matthews, H. Imaging in high aperture optical systems. J. Opt. Soc. Am. A 1987, 4, 1354–1360. [Google Scholar] [CrossRef]
- Roth, S.; Sheppard, C.J.R.; Heintzmann, R. Superconcentration of light—Circumventing the classical limit to achievable irradiance. Opt. Lett. 2016, 41, 2109–2112. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Gu, M. Image formation in two-photon fluorescence microscopy. Optik 1990, 86, 104–106. [Google Scholar]
- Gu, M.; Sheppard, C.J.R. Effects of a finite-sized pinhole on 3-D image formation in confocal two-photon fluorescence microscopy. J. Mod. Opt. 1993, 40, 2009–2024. [Google Scholar] [CrossRef]
- Gu, M.; Sheppard, C.J.R. Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy. J. Microsc. 1995, 177, 128–137. [Google Scholar] [CrossRef]
- Gauderon, R.; Sheppard, C.J.R. Effect of a finite-size pinhole on noise performance in single-, two-, and three-photon confocal fluorescence microscopy. Appl. Opt. 1999, 38, 3562–3565. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R.; Castello, M.; Tortarolo, G.; Vicidomini, G.; Diaspro, A. Image formation in image scanning microscopy, including the case of two-photon excitation. J. Opt. Soc. Am. A 2017, 34, 1339–1350. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R.; Castello, M.; Tortarolo, G.; Deguchi, T.; Koho, S.V.; Vicidomini, G.; Diaspro, A. Image scanning microscopy with multiphoton excitation or Bessel beam illumination. J. Opt. Soc. Am. A 2020, 37, 1639–1649. [Google Scholar] [CrossRef]
- Higdon, P.D.; Torok, P.; Wilson, T. Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes. J. Microsc. 1999, 193, 127–1411. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Török, P. The role of pinhole size in high-aperture two- and three-photon microscopy. In Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances; Diaspro, A., Ed.; Wiley Liss: New York, NY, USA, 2002; pp. 127–152. [Google Scholar]
- Gan, X.; Sheppard, C.J.R. Detectability: A new criterion for evaluation of the confocal microscopes. Scanning 1993, 15, 187–192. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Cogswell, C.J.; Gu, M. Signal strength and noise in confocal microscopy: Factors influencing selection of an optimum detector aperture. Scanning 1991, 13, 233–240. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Cogswell, C.J. Confocal microscopy with detector arrays. J. Mod. Opt. 1990, 37, 267–279. [Google Scholar] [CrossRef]
- Roider, C.; Piestun, R.; Jesacher, A. 3D image scanning microscopy with engineered excitation and detection. Optica 2017, 4, 1373–1381. [Google Scholar] [CrossRef]
- Leray, A.; Mertz, J. Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging. Opt. Express 2006, 14, 10565–10573. [Google Scholar] [CrossRef] [Green Version]
- Si, K.; Gong, W.; Chen, N.G.; Sheppard, C.J.R. Two-photon focal modulation microscopy in turbid media. Opt. Lett. 2011, 99, 233702. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, J.; Shi, X.; Zhu, X.; Wang, J.; Huang, L.; Si, K.; Sheppard, C.J.R.; Gong, W. Two-photon focal modulation microscopy for high-resolution imaging in deep tissue. J. Opt. Soc. Am. A 2019, 12, e201800247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Description |
---|---|
Background from a uniform volume object. | |
Axial fingerprint: variation with defocus for an offset detector point. | |
Integrated intensity: The transverse integral over the PSF. | |
Peak of the intensity PSF. | |
H | Intensity point spread function (PSF). |
u | Normalized axial distance (defocus). |
Value of u for the intensity to drop to 1/2. | |
v | Normalized cylindrical radius r (or normalized distance x). |
Strategy | Annulus PRF | Improvement in FWHM | I | Negative Excursion |
---|---|---|---|---|
A | Defocused max. | 6.2% | 2.56 | < |
B | 2/3 | < | 2.48 | |
C | 0 | 2.63 | ||
D | 1 | 2.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheppard, C.J.R.; Castello, M.; Tortarolo, G.; Zunino, A.; Slenders, E.; Bianchini, P.; Vicidomini, G.; Diaspro, A. Background Rejection in Two-Photon Fluorescence Image Scanning Microscopy. Photonics 2023, 10, 601. https://doi.org/10.3390/photonics10050601
Sheppard CJR, Castello M, Tortarolo G, Zunino A, Slenders E, Bianchini P, Vicidomini G, Diaspro A. Background Rejection in Two-Photon Fluorescence Image Scanning Microscopy. Photonics. 2023; 10(5):601. https://doi.org/10.3390/photonics10050601
Chicago/Turabian StyleSheppard, Colin J. R., Marco Castello, Giorgio Tortarolo, Alessandro Zunino, Eli Slenders, Paolo Bianchini, Giuseppe Vicidomini, and Alberto Diaspro. 2023. "Background Rejection in Two-Photon Fluorescence Image Scanning Microscopy" Photonics 10, no. 5: 601. https://doi.org/10.3390/photonics10050601
APA StyleSheppard, C. J. R., Castello, M., Tortarolo, G., Zunino, A., Slenders, E., Bianchini, P., Vicidomini, G., & Diaspro, A. (2023). Background Rejection in Two-Photon Fluorescence Image Scanning Microscopy. Photonics, 10(5), 601. https://doi.org/10.3390/photonics10050601