Axial Resolution Enhancement of Optical Sectioning Structured Illumination Microscopy Based on Three-Beam Interference
Abstract
:1. Introduction
2. Principle of TBOS
3. Simulation Results
4. Experimental Results and Discussion
4.1. Experimental Setup
4.2. Axial Resolution Measurement
4.3. Imaging Result of Biological Sample
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breuninger, T.; Greger, K.; Stelzer, E.H.K. Lateral modulation boosts image quality in single plane illumination fluorescence microscopy. Opt. Lett. 2007, 32, 1938–1940. [Google Scholar] [CrossRef] [PubMed]
- Planchon, T.A.; Gao, L.; Milkie, D.E.; Davidson, M.W.; Galbraith, J.A.; Galbraith, C.G.; Betzig, E. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 2011, 8, 417–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, D.; Gao, P.; Zhao, T.Y.; Dang, S.P.; Qian, J.; Lei, M.; Min, J.W.; Yu, X.H.; Yao, B.L. Super-resolution and optical sectioning integrated structured illumination microscopy. J. Phys. D Appl. Phys. 2021, 54, 074004. [Google Scholar] [CrossRef]
- Thomas, B.; Momany, M.; Kner, P. Optical sectioning structured illumination microscopy with enhanced sensitivity. J. Opt. 2013, 15, 094004. [Google Scholar] [CrossRef]
- Isobe, K.; Takeda, T.; Mochizuki, K.; Song, Q.Y.; Suda, A.; Kannari, F.; Kawano, H.; Kumagai, A.; Miyawaki, A.; Midorikawa, K. Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination. Biomed. Opt. Express 2013, 4, 2396–2410. [Google Scholar] [CrossRef] [Green Version]
- Paddock, S.W. Confocal laser scanning microscopy. Biotechniques 1999, 27, 998–1002. [Google Scholar] [CrossRef] [Green Version]
- Amos, W.B.; White, J.G. How the Confocal Laser Scanning Microscope entered Biological Research. Biol. Cell 2003, 95, 335–342. [Google Scholar] [CrossRef]
- Denk, W.; Strickler, J.H.; Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.L.; Liang, Y.J.; Chen, S.; Hsu, C.L.; Chavarha, M.; Evans, S.W.; Shi, D.Q.; Lin, M.H.Z.; Tsia, K.K.; Ji, N. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods 2020, 17, 287–290. [Google Scholar] [CrossRef]
- Vettenburg, T.; Dalgarno, H.I.C.; Nylk, J.; Coll-Llado, C.; Ferrier, D.E.K.; Cizmar, T.; Gunn-Moore, F.J.; Dholakia, K. Light-sheet microscopy using an Airy beam. Nat. Methods 2014, 11, 541–544. [Google Scholar] [CrossRef] [Green Version]
- Stelzer, E.H.; Strobl, F.; Chang, B.-J.; Preusser, F.; Preibisch, S.; McDole, K.; Fiolka, R. Light sheet fluorescence microscopy. Nat. Rev. Methods Prim. 2021, 1, 73. [Google Scholar] [CrossRef]
- Neil, M.A.A.; Juskaitis, R.; Wilson, T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 1997, 22, 1905–1907. [Google Scholar] [CrossRef] [PubMed]
- O’Holleran, K.; Shaw, M. Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy. Biomed. Opt. Express 2014, 5, 2580–2590. [Google Scholar] [CrossRef] [Green Version]
- Ilie, M.A.; Caruntu, C.; Lupu, M.; Lixandru, D.; Tampa, M.; Georgescu, S.R.; Bastian, A.; Constantin, C.; Neagu, M.; Zurac, S.A.; et al. Current and future applications of confocal laser scanning microscopy imaging in skin oncology. Oncol. Lett. 2019, 17, 4102–4111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisken, J.; Swoger, J.; Del Bene, F.; Wittbrodt, J.; Stelzer, E.H.K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 2004, 305, 1007–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voie, A.H.; Burns, D.; Spelman, F. Orthogonal-plane fluorescence optical sectioning: Three-dimensional imaging of macroscopic biological specimens. J. Microsc. 1993, 170, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.Y.; Yu, X.H.; Bai, C.; Min, J.W.; Li, R.Z.; Yang, Y.L.; Yao, B.L. Multiple airy beams light-sheet fluorescence microscopy. Front. Phys. 2022, 10, 1360. [Google Scholar] [CrossRef]
- Dan, D.; Yao, B.L.; Lei, M. Structured illumination microscopy for super-resolution and optical sectioning. Chin. Sci. Bull. 2014, 59, 1291–1307. [Google Scholar] [CrossRef]
- Gustafsson, M.G.L.; Shao, L.; Carlton, P.M.; Wang, C.J.R.; Golubovskaya, I.N.; Cande, W.Z.; Agard, D.A.; Sedat, J.W. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 2008, 94, 4957–4970. [Google Scholar] [CrossRef] [Green Version]
- Li, X.S.; Wu, Y.C.; Su, Y.J.; Rey-Suarez, I.; Matthaeus, C.; Updegrove, T.B.; Wei, Z.; Zhang, L.X.; Sasaki, H.; Li, Y.; et al. Three-dimensional structured illumination microscopy with enhanced axial resolution. Nat. Biotechnol. 2023. [Google Scholar] [CrossRef]
- Wilson, T. Optical sectioning in fluorescence microscopy. J. Microsc. 2011, 242, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, T.S.; Rahman, M.; Mack, V.; Sokolov, K.; Rogers, J.D.; Richards-Kortum, R.; Descour, M.R. High resolution, molecular-specific, reflectance imaging in optically dense tissue phantoms with structured-illumination. Opt. Express 2004, 12, 3745–3758. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, L.H.; Schuster, D.; Schaffer, J. Structured illumination microscopy: Artefact analysis and reduction utilizing a parameter optimization approach. J. Microsc. 2004, 216, 165–174. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, C.; Li, X.; Qian, J.; Ma, W.; Min, J.; Gao, P.; Dan, D.; Yao, B. Axial Resolution Enhancement of Optical Sectioning Structured Illumination Microscopy Based on Three-Beam Interference. Photonics 2023, 10, 682. https://doi.org/10.3390/photonics10060682
Xiao C, Li X, Qian J, Ma W, Min J, Gao P, Dan D, Yao B. Axial Resolution Enhancement of Optical Sectioning Structured Illumination Microscopy Based on Three-Beam Interference. Photonics. 2023; 10(6):682. https://doi.org/10.3390/photonics10060682
Chicago/Turabian StyleXiao, Chao, Xing Li, Jia Qian, Wang Ma, Junwei Min, Peng Gao, Dan Dan, and Baoli Yao. 2023. "Axial Resolution Enhancement of Optical Sectioning Structured Illumination Microscopy Based on Three-Beam Interference" Photonics 10, no. 6: 682. https://doi.org/10.3390/photonics10060682
APA StyleXiao, C., Li, X., Qian, J., Ma, W., Min, J., Gao, P., Dan, D., & Yao, B. (2023). Axial Resolution Enhancement of Optical Sectioning Structured Illumination Microscopy Based on Three-Beam Interference. Photonics, 10(6), 682. https://doi.org/10.3390/photonics10060682