Experimental Generation of Structured Light Beams through Highly Anisotropic Scattering Media with an Intensity Transmission Matrix Measurement
Abstract
:1. Introduction
2. Methods and Experimental Scheme
3. Experimental Results
3.1. Construct Bessel-like Beams through ZnO Scattering Layer
3.2. Construct Radially and Azimuthally Polarized Beams through ZnO Scattering Layer
3.3. Construct Vortex Beams through ZnO Scattering Layer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcés-Chávez, V.; McGloin, D.; Melville, H.; Sibbett, W.; Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 2002, 419, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Zhan, Q. Trapping metallic Rayleigh particles with radial polarization. Opt. Express 2004, 12, 3377–3382. [Google Scholar] [CrossRef]
- Fahrbach, F.O.; Simon, P.; Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photonics 2010, 4, 780–785. [Google Scholar] [CrossRef]
- Yu, W.; Ji, Z.; Dong, D.; Yang, X.; Xiao, Y.; Gong, Q.; Xi, P.; Shi, K. Super-resolution deep imaging with hollow Bessel beam STED microscopy. Laser Photonics Rev. 2016, 10, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Gohn-Kreuz, C.; Rohrbach, A. Light needles in scattering media using self-reconstructing beams and the STED principle. Optica 2017, 4, 1134. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488. [Google Scholar] [CrossRef]
- Xue, Y.; Kuang, C.; Li, S.; Gu, Z.; Liu, X. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy. Opt. Express 2012, 20, 17653–17666. [Google Scholar] [CrossRef]
- Zhong, M.-C.; Gong, L.; Li, D.; Zhou, J.-H.; Wang, Z.-Q.; Li, Y.-M. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams. Appl. Phys. Lett. 2014, 105, 181112. [Google Scholar] [CrossRef]
- Meier, M.; Romano, V.; Feurer, T. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A 2007, 86, 329–334. [Google Scholar] [CrossRef] [Green Version]
- de Aguiar, H.B.; Gigan, S.; Brasselet, S. Polarization recovery through scattering media. Sci. Adv. 2017, 3, e1600743. [Google Scholar] [CrossRef] [Green Version]
- Mosk, A.P.; Lagendijk, A.; Lerosey, G.; Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 2012, 6, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Vellekoop, I.M.; Lagendijk, A.; Mosk, A.P. Exploiting disorder for perfect focusing. Nat. Photonics 2010, 4, 320–322. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Peng, T.; Li, R.; Wang, K.; Sun, D.; Yao, B. Extending the Imaging Depth of Field through Scattering Media by Wavefront Shaping of Non-Diffraction Beams. Photonics 2023, 10, 497. [Google Scholar] [CrossRef]
- Andreoli, D.; Volpe, G.; Popoff, S.; Katz, O.; Gresillon, S.; Gigan, S. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix. Sci. Rep. 2015, 5, 10347. [Google Scholar] [CrossRef] [Green Version]
- Popoff, S.M.; Lerosey, G.; Carminati, R.; Fink, M.; Boccara, A.C.; Gigan, S. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 2010, 104, 100601. [Google Scholar] [CrossRef]
- Tripathi, S.; Paxman, R.; Bifano, T.; Toussaint, K.C., Jr. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media. Opt. Express 2012, 20, 16067–16076. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhou, E.H.; Brake, J.; Ruan, H.; Jang, M.; Yang, C. Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica 2015, 2, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Woo, C.M.; Zhong, T.; Yu, Z.; Luo, Y.; Zheng, Y.; Yang, X.; Hui, H.; Lai, P. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm. Photonics Res. 2021, 9, 202–212. [Google Scholar] [CrossRef]
- Vellekoop, I.M. Feedback-based wavefront shaping. Opt. Express 2015, 23, 12189–12206. [Google Scholar] [CrossRef]
- Conkey, D.B.; Brown, A.N.; Caravaca-Aguirre, A.M.; Piestun, R. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 2012, 20, 4840–4849. [Google Scholar] [CrossRef]
- Li, R.; Peng, T.; Liang, Y.; Yang, Y.; Yao, B.; Yu, X.; Min, J.; Lei, M.; Yan, S.; Zhang, C.; et al. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media. J. Opt. 2017, 19, 105602. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-Y.; Wang, B.-Y.; Cheng, Z.-J.; Yue, Q.-Y.; Guo, C.-S. Measurement of vector transmission matrix and control of beam focusing through a multiple-scattering medium based on a vector spatial light modulator and two-channel polarization holography. Appl. Phys. Lett. 2017, 110, 221105. [Google Scholar] [CrossRef]
- Yu, P.; Zhao, Q.; Hu, X.; Li, Y.; Gong, L. Tailoring arbitrary polarization states of light through scattering media. Appl. Phys. Lett. 2018, 113, 121102. [Google Scholar] [CrossRef]
- Di Battista, D.; Zacharakis, G.; Leonetti, M. Enhanced adaptive focusing through semi-transparent media. Sci. Rep. 2015, 5, 17406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boniface, A.; Mounaix, M.; Blochet, B.; Piestun, R.; Gigan, S. Transmission-matrix-based point-spread-function engineering through a complex medium. Optica 2017, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Tu, S.; Lei, Q.; Guo, C.; Zhan, Q.; Cai, Y. Creation of cylindrical vector beams through highly anisotropic scattering media with a single scalar transmission matrix calibration. Photonics Res. 2022, 10, 1617–1623. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, H.; Du, S.; Liu, Z.; Zhang, B.; Fu, X.; Liu, Q. Particle manipulation behind a turbid medium based on the intensity transmission matrix. Photonics Res. 2022, 10, 2293–2301. [Google Scholar] [CrossRef]
- Zhao, T.; Ourselin, S.; Vercauteren, T.; Xia, W. Seeing through multimode fibers with real-valued intensity transmission matrices. Opt. Express 2020, 28, 20978–20991. [Google Scholar] [CrossRef]
- Woo, C.M.; Zhao, Q.; Zhong, T.; Li, H.; Yu, Z.; Lai, P. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping. APL Photonics 2022, 7, 046109. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Z.-Q.; Yu, P.-P.; Li, Y.-M.; Gong, L. Vector focusing through highly scattering media via binary amplitude modulation. Appl. Phys. Express 2019, 12, 062002. [Google Scholar] [CrossRef]
- Vellekoop, I.M.; Mosk, A. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 2007, 32, 2309–2311. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Q.; Gong, H.; Tu, S.; Cai, Y.; Zhao, Q. Experimental Generation of Structured Light Beams through Highly Anisotropic Scattering Media with an Intensity Transmission Matrix Measurement. Photonics 2023, 10, 737. https://doi.org/10.3390/photonics10070737
Lei Q, Gong H, Tu S, Cai Y, Zhao Q. Experimental Generation of Structured Light Beams through Highly Anisotropic Scattering Media with an Intensity Transmission Matrix Measurement. Photonics. 2023; 10(7):737. https://doi.org/10.3390/photonics10070737
Chicago/Turabian StyleLei, Qiannan, Haokai Gong, Shijie Tu, Yangjian Cai, and Qian Zhao. 2023. "Experimental Generation of Structured Light Beams through Highly Anisotropic Scattering Media with an Intensity Transmission Matrix Measurement" Photonics 10, no. 7: 737. https://doi.org/10.3390/photonics10070737
APA StyleLei, Q., Gong, H., Tu, S., Cai, Y., & Zhao, Q. (2023). Experimental Generation of Structured Light Beams through Highly Anisotropic Scattering Media with an Intensity Transmission Matrix Measurement. Photonics, 10(7), 737. https://doi.org/10.3390/photonics10070737