Ultrafast Fiber Laser Emitting at 2.8 µm Based on a SESAM and a Broadband FBG
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. FBG Peak Reflectance
3.2. The FBG Bandwidth
3.3. Laser Cavity Length Effect
3.4. Pump Combiner Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CW | Continuous wave |
FBG | Fiber Bragg grating |
FROG | Frequency resolved optical gating |
FWHM | Full width at half maximum |
MCT | Mercury cadmium telluride |
Near-IR | Near-infrared |
Mid-IR | Mid-infrared |
OPA | Optical parametric amplifier |
OPO | Optical parametric oscillator |
OSA | Optical spectrum analyzer |
RF | Radio frequency |
SAM | Saturable absorber mirror |
SESAM | Semi conductor saturable absorber mirror |
References
- Jackson, S.; Bernier, M.; Vallée, R. (Eds.) Mid-Infrared Fiber Photonics, 1st ed.; Woodhead Publishing Series in Electronic and Optical Materials; Elsevier: Sawston, UK, 2021. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, G.; Wei, C.; Kotov, L.V.; Wang, J.; Tong, M.; Norwood, R.A.; Peyghambarian, N. Pulsed fluoride fiber lasers at 3 µm. J. Opt. Soc. Am. B 2017, 34, 15–28. [Google Scholar] [CrossRef]
- Jobin, F.; Paradis, P.; Aydin, Y.O.; Boilard, T.; Fortin, V.; Gauthier, J.C.; Lemieux-Tanguay, M.; Magnan-Saucier, S.; Michaud, L.C.; Mondor, S.; et al. Recent developments in lanthanide-doped mid-infrared fluoride fiber lasers. Opt. Express 2022, 30, 8615–8640. [Google Scholar] [CrossRef] [PubMed]
- Amini-Nik, S.; Kraemer, D.; Cowan, M.L.; Gunaratne, K.; Nadesan, P.; Alman, B.A.; Miller, R.J.D. Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery. PLoS ONE 2010, 5, e13053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franjic, K.; Cowan, M.L.; Kraemer, D.; Miller, R.J.D. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations. Opt. Express 2009, 17, 22937–22959. [Google Scholar] [CrossRef] [PubMed]
- Jelínková, H. (Ed.) Lasers for Medical Applications; Woodhead Publishing: Cambridge, UK, 2013. [Google Scholar]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Walsh, B.M.; Lee, H.R.; Barnes, N.P. Mid infrared lasers for remote sensing applications. J. Lumin. 2016, 169, 400–405. [Google Scholar] [CrossRef]
- Sorkio, A.; Koch, L.; Koivusalo, L.; Deiwick, A.; Miettinen, S.; Chichkov, B.; Skottman, H. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 2018, 171, 57–71. [Google Scholar] [CrossRef]
- Cheng, S.C.; Shiea, C.; Huang, Y.L.; Wang, C.H.; Cho, Y.T.; Shiea, J. Laser-based ambient mass spectrometry. Anal. Methods 2017, 9, 4924–4935. [Google Scholar] [CrossRef]
- Wang, C.; Sahay, P. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits. Sensors 2009, 9, 8230–8262. [Google Scholar] [CrossRef]
- Duval, S.; Bernier, M.; Fortin, V.; Genest, J.; Piché, M.; Vallée, R. Femtosecond fiber lasers reach the mid-infrared. Optica 2015, 2, 623–626. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Jackson, S.D.; Hudson, D.D. Ultrafast pulses from a mid-infrared fiber laser. Opt. Lett. 2015, 40, 4226–4228. [Google Scholar] [CrossRef] [PubMed]
- Duval, S.; Olivier, M.; Fortin, V.; Bernier, M.; Piché, M.; Vallée, R. 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm. Fiber Lasers XIII Technol. Syst. Appl. 2016, 9728, 972802. [Google Scholar] [CrossRef]
- Antipov, S.; Hudson, D.D.; Fuerbach, A.; Jackson, S.D. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica 2016, 3, 1373–1376. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jobin, F.; Duval, S.; Fortin, V.; Laporta, P.; Bernier, M.; Galzerano, G.; Vallée, R. Ultrafast Dy3+:fluoride fiber laser beyond 3 µm. Opt. Lett. 2019, 44, 395–398. [Google Scholar] [CrossRef]
- Bawden, N.; Henderson-Sapir, O.; Jackson, S.D.; Ottaway, D.J. Ultrafast 3.5 µm fiber laser. Opt. Lett. 2021, 46, 1636–1639. [Google Scholar] [CrossRef]
- Huang, J.; Pang, M.; Jiang, X.; Köttig, F.; Schade, D.; He, W.; Butryn, M.; Russell, P.S.J. Sub-two-cycle octave-spanning mid-infrared fiber laser. Optica 2020, 7, 574–579. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Z.; Yuan, P.; Ma, J.; Xie, G. 2-MW peak-power pulses from a dispersion-managed fluoride fiber amplifier at 2.8 µm. Opt. Lett. 2021, 46, 5104–5107. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Qin, Z.; Liu, J.; Zhao, C.; Xie, G.; Wen, S.; Qian, L. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett. 2015, 40, 4855–4858. [Google Scholar] [CrossRef]
- Wei, C.; Zhu, X.; Norwood, R.A.; Peyghambarian, N. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett. 2012, 37, 3849–3851. [Google Scholar] [CrossRef]
- Qin, Z.; Xie, G.; Zhao, C.; Wen, S.; Yuan, P.; Qian, L. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett. 2016, 41, 56–59. [Google Scholar] [CrossRef]
- Zhu, F.; Bicer, A.; Askar, R.; Bounds, J.; Kolomenskii, A.A.; Kelessides, V.; Amani, M.; Schuessler, H.A. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 2015, 12, 095701. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Y.; Li, J.; Liu, Y. High-stability, linearly polarized mode-locking generation from a polarization-maintaining fiber oscillator around 2.8 µm. Opt. Lett. 2021, 46, 4550–4553. [Google Scholar] [CrossRef]
- Luo, H.; Li, S.; Wu, X.; Kang, Z.; Li, J.; Qin, G.; Qin, W.; Liu, Y. Unlocking the ultrafast potential of gold nanowires for mode-locking in the mid-infrared region. Opt. Lett. 2021, 46, 1562–1565. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hudson, D.D.; Liu, Y.; Jackson, S.D. Efficient 2.87 µm fiber laser passively switched using a semiconductor saturable absorber mirror. Opt. Lett. 2012, 37, 3747–3749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, T.; Hudson, D.D.; Jackson, S.D. Stable, self-starting, passively mode-locked fiber ring laser of the 3 µm class. Opt. Lett. 2014, 39, 2133–2136. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Jiang, T.; Zheng, X.; Yu, H.; Cheng, X.; Hou, J. Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber. arXiv 2015, arXiv:1505.06322. [Google Scholar] [CrossRef]
- Qin, Z.; Hai, T.; Xie, G.; Ma, J.; Yuan, P.; Qian, L.; Li, L.; Zhao, L.; Shen, D. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 µm wavelength. Opt. Express 2018, 26, 8224–8231. [Google Scholar] [CrossRef]
- Qin, Z.; Chai, X.; Xie, G.; Xu, Z.; Zhou, Y.; Wu, Q.; Li, J.; Wang, Z.; Weng, Y.; Hai, T.; et al. Semiconductor saturable absorber mirror in the 3–5 µm mid-infrared region. Opt. Lett. 2022, 47, 890–893. [Google Scholar] [CrossRef]
- Haboucha, A.; Fortin, V.; Bernier, M.; Genest, J.; Messaddeq, Y.; Vallée, R. Fiber Bragg grating stabilization of a passively mode-locked 2.8 µm Er3+: Fluoride glass fiber laser. Opt. Lett. 2014, 39, 3294–3297. [Google Scholar] [CrossRef]
- Qin, Z.; Xie, G.; Ma, J.; Yuan, P.; Qian, L. 2.8 µm all-fiber Q-switched and mode-locked lasers with black phosphorus. Photonics Res. 2018, 6, 1074–1078. [Google Scholar] [CrossRef] [Green Version]
- Bharathan, G.; Xu, L.; Jiang, X.; Zhang, H.; Li, Z.; Chen, F.; Fuerbach, A. MXene and PtSe2 saturable absorbers for all-fibre ultrafast mid-infrared lasers. Opt. Mater. Express 2021, 11, 1898–1906. [Google Scholar] [CrossRef]
- Bernier, M.; Trepanier, F.; Carrier, J.; Vallée, R. Efficient writing of Bragg gratings through the coating of various optical fibers. In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides; Optica Publishing Group: Washington, DC, USA, 2014; p. BM2D.3. [Google Scholar] [CrossRef]
- Majewski, M.R.; Pawliszewska, M.; Jackson, S.D. Picosecond pulse formation in the presence of atmospheric absorption. Opt. Express 2021, 29, 19159–19169. [Google Scholar] [CrossRef] [PubMed]
- Paradis, P.; Duval, S.; Fortin, V.; Vallée, R.; Bernier, M. Towards Ultrafast All-Fiber Laser at 2.8 µm Based on a SESAM and a Fiber Bragg Grating. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 23–27 June 2019; p. 1. [Google Scholar] [CrossRef]
- Richardson, D.J.; Nilsson, J.; Clarkson, W.A. High power fiber lasers: Current status and future perspectives. J. Opt. Soc. Am. B 2010, 27, B63. [Google Scholar] [CrossRef]
- Abas, A.F.; Lau, K.Y.; Abdulkawi, W.M.; Alresheedi, M.T.; Muhammad, F.D.; Mahdi, M.A. Dispersion Management and Pulse Characterization of Graphene-Based Soliton Mode-Locked Fiber Lasers. Appl. Sci. 2022, 12, 3288. [Google Scholar] [CrossRef]
Laser Cavity | FBG Reflectance (%) | FBG Bandwidth (nm) | FBG Central Wavelength (nm) | Fiber Length (m) |
---|---|---|---|---|
1 | 82–35 | 0.7 | 2791.0 | 2 |
2 | 65 | 3.2 | 2790.9 | 2 |
3 | 23 | 7.2 | 2792.5 | 4–1.25 |
4 | 58 | 6.8 | 2793.1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paradis, P.; Boilard, T.; Fortin, V.; Vallée, R.; Bernier, M. Ultrafast Fiber Laser Emitting at 2.8 µm Based on a SESAM and a Broadband FBG. Photonics 2023, 10, 753. https://doi.org/10.3390/photonics10070753
Paradis P, Boilard T, Fortin V, Vallée R, Bernier M. Ultrafast Fiber Laser Emitting at 2.8 µm Based on a SESAM and a Broadband FBG. Photonics. 2023; 10(7):753. https://doi.org/10.3390/photonics10070753
Chicago/Turabian StyleParadis, Pascal, Tommy Boilard, Vincent Fortin, Réal Vallée, and Martin Bernier. 2023. "Ultrafast Fiber Laser Emitting at 2.8 µm Based on a SESAM and a Broadband FBG" Photonics 10, no. 7: 753. https://doi.org/10.3390/photonics10070753
APA StyleParadis, P., Boilard, T., Fortin, V., Vallée, R., & Bernier, M. (2023). Ultrafast Fiber Laser Emitting at 2.8 µm Based on a SESAM and a Broadband FBG. Photonics, 10(7), 753. https://doi.org/10.3390/photonics10070753