Enhanced Deconvolution and Denoise Method for Scattering Image Restoration
Abstract
:1. Introduction
2. Methods
2.1. Proposed Method
2.1.1. Deconvolution
2.1.2. Proportion of the Edge Frequency
2.1.3. U-Shape Neural Network
2.2. Experimental Setup
3. Results and Analysis
3.1. Deconvolution with Exposure Improvement
3.2. Optimum Seeking Method of Parameter K
3.3. Denoise
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiersma, D.S. Disordered photonics. Nat. Photonics 2013, 7, 188–196. [Google Scholar] [CrossRef]
- Wang, X.; Jin, X.; Li, J. Prior-free position detection for large field-of-view scattering imaging. Photonics Res. 2020, 8, 920–928. [Google Scholar] [CrossRef]
- Vellekoop, I.M.; Mosk, A.P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 2007, 32, 2309–2311. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Guan, Y.; Zhou, J. Image restoration through thin turbid layers by correlation with a known object. Opt. Express 2013, 21, 12539–12545. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Peng, T.; Li, R.; Wang, K.; Sun, D.; Yao, B. Extending the Imaging Depth of Field through Scattering Media by Wavefront Shaping of Non-Diffraction Beams. Photonics 2023, 10, 497. [Google Scholar] [CrossRef]
- Yaqoob, Z.; Psaltis, D.; Feld, M.S.; Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2008, 2, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Vellekoop, I.M.; Cui, M.; Yang, C. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 2012, 101, 081108. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, Y.; Ma, C.; Wang, L.V. Focusing light through biological tissue and tissue -mimicking phantoms up to 9.6cm in thickness with digital optical phase conjugation. J. Biomed. Opt. 2016, 21, 085001. [Google Scholar] [CrossRef] [Green Version]
- Popoff, S.M.; Lerosey, G.; Carminati, R.; Fink, M.; Boccara, A.C.; Gigan, S. Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media. Phys. Rev. Lett. 2010, 104, 100601. [Google Scholar] [CrossRef]
- Mounaix, M.; Andreoli, D.; Defienne, H.; Volpe, G.; Katz, O.; Grésillon, S.; Gigan, S. Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix. Phys. Rev. Lett. 2016, 116, 253901. [Google Scholar] [CrossRef] [Green Version]
- Boniface, A.; Mounaix, M.; Blochet, B.; Piestun, R.; Gigan, S. Transmission-matrix-based point-spread-function engineering through a complex medium. Optica 2017, 4, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Shi, J.; Sun, L.; Fan, J.; Zeng, G. Image reconstruction through dynamic scattering media based on deep learning. Opt. Express 2019, 27, 16032–16046. [Google Scholar] [CrossRef] [PubMed]
- Guo, E.; Zhu, S.; Sun, Y.; Bai, L.; Zuo, C.; Han, J. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect. Opt. Express 2020, 28, 2433–2446. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wu, X.; Shi, J.; Zeng, G. Scattering-Assisted Computational Imaging. Photonics 2022, 9, 512. [Google Scholar] [CrossRef]
- Bertolotti, J.; Van Putten, E.G.; Blum, C.; Lagendijk, A.; Vos, W.L.; Mosk, A.P. Non-invasive imaging through opaque scattering layers. Nature 2012, 491, 232–234. [Google Scholar] [CrossRef]
- Katz, O.; Heidmann, P.; Fink, M.; Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 2014, 8, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Eitan, E.; Scarcelli, G. Optical imaging through dynamic turbid media using the Fourier-domain showercurtain effect. Optica 2016, 3, 71–74. [Google Scholar]
- Zhuang, H.; He, H.; Xie, X.; Zhou, J. High speed color imaging through scattering media with a large field of view. Sci. Rep. 2016, 6, 32696. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Yang, W.; Wang, H.; Situ, G. Image Transmission through Scattering Media Using Ptychographic Iterative Engine. Appl. Sci. 2019, 9, 849. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Kane, C.; Lee, P.A.; Stone, A.D. Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media. Phys. Rev. Lett. 1988, 61, 834–837. [Google Scholar] [CrossRef] [Green Version]
- Freund, I.; Rosenbluh, M.; Feng, S. Memory Effects in Propagation of Optical Waves through Disordered Media. Phys. Rev. Lett. 1988, 61, 2328–2331. [Google Scholar] [CrossRef] [PubMed]
- Lucy, L.B. An iterative technique for the rectification of observed distributions. Astron. J. 1974, 79, 745. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Koo, J.-Y. Wavelet deconvolution. IEEE Trans. Inf. Theory 2002, 48, 734–747. [Google Scholar] [CrossRef] [Green Version]
- Strakhov, V.N.; Vorontsov, S.V. Digital image deblurring with SOR. Inverse Probl. 2008, 24, 025024. [Google Scholar] [CrossRef]
- Ponomarenko, N.; Ieremeiev, O.; Lukin, V.; Egiazarian, K.; Jin, L.; Astola, J.; Vozel, B.; Chehdi, K.; Carli, M.; Battisti, F.; et al. Color image database TID2013: Peculiarities and preliminary results. In Proceedings of the European Workshop on Visual Information Processing, Paris, France, 10–12 June 2013; pp. 106–111. [Google Scholar]
- Chen, Z.; Li, W.; Wu, H.; Wang, J. A Real-time Scattered Image Restoration Technique Optimized by Deconvolution and Exposure Adjustment. In Proceedings of the 4th International Conference on Intelligent Control, Measurement and Signal Processing, Hangzhou, China, 8–10 July 2022; pp. 803–807. [Google Scholar]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. Non-local means denoising. Image Process. Line 2011, 1, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Li, P.; Chen, W.; Ng, M.K. Compressive total variation for image reconstruction and restoration. Comput. Math. Appl. 2020, 80, 874–893. [Google Scholar] [CrossRef]
- Adam, T.; Paramesran, R. Image denoising using combined higher order non-convex total variation with overlapping group sparsity. Multidimens. Syst. Signal Process. 2019, 30, 503–527. [Google Scholar] [CrossRef]
Item | Configuration |
---|---|
CPU | Intel(R) Core i7-7700 CPU: 3.60 GHz |
GPU | NVidia GeForce GTX 1080 Ti |
Operating system | Ubuntu 18.04 LTS |
Environment | Python 3.6, CUDA 10.0 |
Instruments | Parameters |
---|---|
Light source (620 nm LED) | Daheng GCI-060401; Power: 3 W |
Collimating lens L1 | f = 100 mm |
Aperture | Φ ≤ 4 cm |
Object | Hollow pattern, size ≤ 4 mm × 4 mm |
Diffuser | Newport, 10°, polycarbonate, thickness 0.76 mm |
Imaging lens L2 | f = 100 mm |
Camera | Do3think MGS508M-H2, resolution: 2448 × 2048 |
Diameters of Pinholes/μm | SSIM | PSNR/dB |
---|---|---|
190 | 0.407 | 23.28 |
140 | 0.425 | 23.20 |
90 | 0.444 | 24.28 |
Object | The Range of Optimal K Values for the Object |
---|---|
Rui | 8.5 × 106~1.9 × 107 |
L | 3.2 × 107~8.5 × 107 |
R | 1.5 × 107~6.5 × 107 |
Spines | 8.2 × 106~3.3 × 107 |
Cross | 2.1 × 106~1.2 × 107 |
RL | 2.1 × 106~1.6 × 107 |
Guang | 1.3 × 107~3.3 × 107 |
Object | The Range of Normalized Edge Frequency |
---|---|
Rui | [0.003, 0.036] |
L | [0.005, 0.032] |
R | [0.005, 0.032] |
Spines | [0.002, 0.037] |
Cross | [0.005, 0.035] |
RL | [0.004, 0.030] |
Guang | [0.004, 0.033] |
Image Resolution | Weiner Filter Deconvolution | PEF Calculation | Data Fitting | Total |
---|---|---|---|---|
2448 × 2048 | 34.3 | 6.5 | 0.7 | 41.5 |
1224 × 1024 | 16.6 | 6.4 | 0.8 | 23.8 |
612 × 512 | 12.3 | 6.4 | 0.7 | 19.4 |
Item | Deconvolution Results | Denoise with Network | |
---|---|---|---|
Trained Samples | Validation Samples | ||
PSNR/dB | 22.58 | 28.75 | 27.36 |
SSIM | 0.30 | 0.86 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wu, H.; Li, W.; Wang, J. Enhanced Deconvolution and Denoise Method for Scattering Image Restoration. Photonics 2023, 10, 751. https://doi.org/10.3390/photonics10070751
Chen Z, Wu H, Li W, Wang J. Enhanced Deconvolution and Denoise Method for Scattering Image Restoration. Photonics. 2023; 10(7):751. https://doi.org/10.3390/photonics10070751
Chicago/Turabian StyleChen, Zepeng, Haolin Wu, Wenyong Li, and Jiahui Wang. 2023. "Enhanced Deconvolution and Denoise Method for Scattering Image Restoration" Photonics 10, no. 7: 751. https://doi.org/10.3390/photonics10070751
APA StyleChen, Z., Wu, H., Li, W., & Wang, J. (2023). Enhanced Deconvolution and Denoise Method for Scattering Image Restoration. Photonics, 10(7), 751. https://doi.org/10.3390/photonics10070751