Investigation of Oceanic Turbulence Random Phase Screen Generation Methods for UWOC
Abstract
:1. Introduction
2. Phase Screen Model
2.1. FSMs for Oceanic Turbulence Phase Screen Generation
2.2. SDM for Oceanic Turbulence Phase Screen Generation
2.3. Hybrid Methods for Ocean Turbulence Phase Screen Generation
3. Results and Discussion
3.1. Ocean Turbulence Phase Screens Generated by FSM
3.2. Ocean Turbulence Phase Screens Generated by SDM Based on Zernike Polynomial Method
3.3. Ocean Turbulence Phase Screens Generated by Hybrid Methods
3.4. Beam Propagation Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 2016, 19, 204–238. [Google Scholar] [CrossRef]
- Fascista, A. Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives. Sensors 2022, 22, 1824. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.Y.; Ahmad, I.; Habibi, D.; Waqar, A. A survey on energy efficiency in underwater wireless communications. J. Netw. Comput. Appl. 2022, 198, 103295. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, S.; Cui, J. Prospects and problems of wireless communication for underwater sensor networks. Wirel. Commun. Mob. Comput. 2008, 8, 977–994. [Google Scholar]
- Akyildiz, I.F.; Pompili, D.; Melodia, T. Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Rev. 2004, 1, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Pompili, D.; Akyildiz, I.F. Overview of networking protocols for underwater wireless communications. IEEE Commun. Mag. 2009, 47, 97–102. [Google Scholar] [CrossRef]
- Johnson, L.J.; Jasman, F.; Green, R.J.; Leeson, M.S. Recent advances in underwater optical wireless communications. Underw. Technol. 2014, 32, 167–175. [Google Scholar] [CrossRef]
- Duntley, S.Q. Light in the sea. JOSA 1963, 53, 214–233. [Google Scholar] [CrossRef]
- Sun, X.; Kang, C.H.; Kong, M.; Alkhazragi, O.; Guo, Y.; Ouhssain, M.; Weng, Y.; Jones, B.H.; Ng, T.K.; Ooi, B.S. A review on practical considerations and solutions in underwater wireless optical communication. J. Light. Technol. 2020, 38, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, X.; Lu, J.; Liu, X.; Shi, J.; Zheng, L.; Liu, R.; Zhou, X.; Tian, P. Toward long-distance underwater wireless optical communication based on a high-sensitivity single photon avalanche diode. IEEE Photonics J. 2020, 12, 7902510. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Liu, X.; Zhang, G.; Tian, P. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron. 2020, 73, 100274. [Google Scholar] [CrossRef]
- Li, C.-Y.; Huang, X.-H.; Lu, H.-H.; Huang, Y.-C.; Huang, Q.-P.; Tu, S.-C. A WDM PAM4 FSO–UWOC integrated system with a channel capacity of 100 Gb/s. J. Light. Technol. 2020, 38, 1766–1776. [Google Scholar] [CrossRef]
- Li, C.-Y.; Lu, H.-H.; Tsai, W.-S.; Cheng, M.-T.; Ho, C.-M.; Wang, Y.-C.; Yang, Z.-Y.; Chen, D.-Y. 16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques. Opt. Express 2017, 25, 11598–11605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kou, L.; Yang, Y.; He, F.; Duan, Z. Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence. Opt. Commun. 2020, 475, 126214. [Google Scholar] [CrossRef]
- Jamali, M.V.; Mirani, A.; Parsay, A.; Aboihassani, B.; Nabavi, P.; Chizari, A.; Khorramshahi, P.; Abdollahramezani, S.; Salehi, J.A. Statistical studies of fading in underwater wireless optical channels in the presence of air bubble, temperature, and salinity random variations. IEEE Trans. Commun. 2018, 66, 4706–4723. [Google Scholar] [CrossRef]
- He, F.T.; Du, Y.; Zhang, J.L.; Fang, W.; Li, B.L.; Zhu, Y.Z. Bit error rate of pulse position modulation wireless optical communication in gamma-gamma oceanic anisotropic turbulence. Acta Phys. Sin. 2019, 68, 164206. [Google Scholar] [CrossRef]
- Hanson, F.; Lasher, M. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber. Appl. Opt. 2010, 49, 3224–3230. [Google Scholar] [CrossRef]
- Weng, Y.; Guo, Y.; Alkhazragi, O.; Ng, T.K.; Guo, J.H.; Ooi, B.S. Impact of turbulent-flow-induced scintillation on deep-ocean wireless optical communication. J. Light. Technol. 2019, 37, 5083–5090. [Google Scholar] [CrossRef]
- Ata, Y.; Baykal, Y. Scintillations of optical plane and spherical waves in underwater turbulence. JOSA A 2014, 31, 1552–1556. [Google Scholar] [CrossRef]
- Dai, L.; Tong, S.; Zhang, L.; Wang, Y. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials. In Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part II; SPIE: Bellingham, WA, USA, 2014; pp. 372–379. [Google Scholar]
- Frehlich, R. Simulation of laser propagation in a turbulent atmosphere. Appl. Opt. 2000, 39, 393–397. [Google Scholar] [CrossRef]
- Moin, P.; Mahesh, K. Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech. 1998, 30, 539–578. [Google Scholar] [CrossRef] [Green Version]
- Vetelino, F.S.; Young, C.; Andrews, L.; Recolons, J. Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence. Appl. Opt. 2007, 46, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, Y.; Zheng, D.H.; Wu, J. Performance comparison of subharnomic and Zernike polynomials method for compensation of low-frequency components in FFT-based Von Karman phase screen. In Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar]
- Tang, X.; Kumar, R.; Sun, C.; Zhang, L.; Chen, Z.; Jiang, R.; Wang, H.; Zhang, A. Towards underwater coherent optical wireless communications using a simplified detection scheme. Opt. Express 2021, 29, 19340–19351. [Google Scholar] [CrossRef]
- Mudge, K.A.; Silva, K.D.; Clare, B.A.; Grant, K.J.; Nener, B.D. Scintillation index of the free space optical channel: Phase screen modelling and experimental results. In Proceedings of the 2011 International Conference on Space Optical Systems and Applications (ICSOS), Santa Monica, CA, USA, 11–13 May 2011; pp. 403–409. [Google Scholar]
- Zhao, S.; Yang, H.; Li, Y.; Cao, F.; Sheng, Y.; Cheng, W.; Gong, L. The influence of atmospheric turbulence on holographic ghost imaging using orbital angular momentum entanglement: Simulation and experimental studies. Opt. Commun. 2013, 294, 223–228. [Google Scholar] [CrossRef]
- Nootz, G.; Matt, S.; Kanaev, A.; Judd, K.P.; Hou, W. Experimental and numerical study of underwater beam propagation in a Rayleigh–Bénard turbulence tank. Appl. Opt. 2017, 56, 6065–6072. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, S. Random Phase Screen Model of Ocean Turbulence. Acta Opt. Sin. 2017, 37, 1201001. [Google Scholar]
- Roddier, N.A. Atmospheric wavefront simulation using Zernike polynomials. Opt. Eng. 1990, 29, 1174–1180. [Google Scholar] [CrossRef]
- Zhang, B.; Qin, S.; Wang, X. Accurate and fast simulation of Kolmogorov phase screen by combining spectral method with Zernike polynomials method. Chin. Opt. Lett. 2010, 8, 969–971. [Google Scholar]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Liu, L.; Sun, J. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence. J. Opt. A Pure Appl. Opt. 2006, 8, 1052–1058. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, J.; Zhang, D.; He, Y.; Xu, T.; Fickler, R.; Chen, L. Free-space remote sensing of rotation at the photon-counting level. Phys. Rev. Appl. 2018, 10, 044014. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Leach, J.; Gong, L.; Ding, J.; Zheng, B. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. Opt. Express 2012, 20, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Fleck, J.A.; Morris, J.; Feit, M. Time-dependent propagation of high energy laser beams through the atmosphere. Appl. Phys. 1976, 10, 129–160. [Google Scholar] [CrossRef]
- Martin, J.; Flatté, S.M. Intensity images and statistics from numerical simulation of wave propagation in 3-D random media. Appl. Opt. 1988, 27, 2111–2126. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Q.; Wei, H.; Liao, S.; Shen, M. Numerical simulation and validation of phase screen distorted by atmospheric turbulence. Opto-Electron. Eng. 2007, 34, 1–4. [Google Scholar]
- McGlamery, B.L. Restoration of turbulence-degraded images. JOSA 1967, 57, 293–297. [Google Scholar] [CrossRef]
- Charnotskii, M. Four methods for generation of turbulent phase screens: Comparison. arXiv 2019, arXiv:1911.09185. [Google Scholar]
- Charnotskii, M. Sparse spectrum model for a turbulent phase. JOSA A 2013, 30, 479–488. [Google Scholar] [CrossRef]
- Charnotskii, M. Statistics of the sparse spectrum turbulent phase. JOSA A 2013, 30, 2455–2465. [Google Scholar] [CrossRef]
- McGlamery, B.L. Computer simulation studies of compensation of turbulence degraded images. In Proceedings of the Image Processing, Pacific Grove, CA, USA, 24–26 February 1976; pp. 225–233. [Google Scholar]
- Paulson, D.A.; Wu, C.; Davis, C.C. Randomized spectral sampling for efficient simulation of laser propagation through optical turbulence. JOSA B 2019, 36, 3249–3262. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Wang, L.; Wang, W.; Zhao, S. An effective way for simulating oceanic turbulence channel on the beam carrying orbital angular momentum. Sci. Rep. 2019, 9, 14009. [Google Scholar] [CrossRef] [Green Version]
- Nikishov, V.V.; Nikishov, V.I. Spectrum of turbulent fluctuations of the sea-water refraction index. Int. J. Fluid Mech. Res. 2000, 27, 82–98. [Google Scholar] [CrossRef]
- Lu, L.; Ji, X.; Baykal, Y. Wave structure function and spatial coherence radius of plane and spherical waves propagating through oceanic turbulence. Opt. Express 2014, 22, 27112–27122. [Google Scholar] [CrossRef]
- Hill, R.J. Optical propagation in turbulent water. JOSA 1978, 68, 1067–1072. [Google Scholar] [CrossRef]
- Cheng, Y.; Canuto, V.M. Stably stratified shear turbulence: A new model for the energy dissipation length scale. J. Atmos. Sci. 1994, 51, 2384–2396. [Google Scholar] [CrossRef]
- Gargett, A.E.; Holloway, G. Sensitivity of the GFDL ocean model to different diffusivities for heat and salt. J. Phys. Oceanogr. 1992, 22, 1158–1177. [Google Scholar] [CrossRef]
- Carbillet, M.; Riccardi, A. Numerical modeling of atmospherically perturbed phase screens: New solutions for classical fast Fourier transform and Zernike methods. Appl. Opt. 2010, 49, G47–G52. [Google Scholar] [CrossRef]
- Noll, R.J. Zernike polynomials and atmospheric turbulence. JOSA 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Roddier, N.A. Curvature Sensing for Adaptive Optics: A Computer Simulation; The University of Arizona: Tucson, AZ, USA, 1989. [Google Scholar]
- Pan, S. Research on Random Phase Screen Model for Simulating Underwater Turbulence. Master’s Thesis, Nanjing University of Posts and Telecommunications, Nanjing, China, 2020. (In Chinese). [Google Scholar]
- Zhai, H.; Wang, B.; Zhang, J.; Dang, A. Fractal phase screen generation algorithm for atmospheric turbulence. Appl. Optics 2015, 54, 4023–4032. [Google Scholar] [CrossRef]
- Lane, R.G.; Glindemann, A.; Dainty, J.C. Simulation of a Kolmogorov phase screen. Waves Random Media 1992, 2, 209–224. [Google Scholar] [CrossRef]
- Gökçe, M.C.; Baykal, Y. Aperture averaging in strong oceanic turbulence. Opt. Commun. 2018, 413, 196–199. [Google Scholar] [CrossRef]
- Wallner, E.P. Optimal wave-front correction using slope measurements. JOSA 1983, 73, 1771–1776. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Multifractals and 1/ƒ Noise: Wild Self-Affinity in Physics (1963–1976); Springer: New York, NY, USA, 1999. [Google Scholar]
Benefits | Limitations | |
---|---|---|
FSM |
|
|
SDM (Zernike) |
|
|
Hybrid methods |
|
|
Different Superposition Coefficient MSE Error (10−3) | Optimal Coef. Error | |||||
---|---|---|---|---|---|---|
DFT + Zernike 50 | Coef. | 1 | 0.9 | 0.8 | 0.7 | 0.8 |
Error | 4.43 | 7.27 | 4.17 | 7.49 | 4.17 | |
SS + Zernike 50 | Coef. | 1 | 0.8 | 0.6 | 0.4 | 0.6 |
Error | 46.52 | 9.46 | 1.90 | 6.95 | 1.90 | |
PWD + Zernike 50 | Coef. | 1 | 0.8 | 0.7 | 0.6 | 0.8 |
Error | 7.33 | 2.78 | 3.97 | 5.72 | 2.78 | |
SU + Zernike 50 | Coef. | 1 | 0.8 | 0.7 | 0.6 | 0.6 |
Error | 36.72 | 11.09 | 4.55 | 2.80 | 2.80 |
Computational Time (s/Frame) | |||||
---|---|---|---|---|---|
Sampling Points | 256 × 256 | 512 × 512 | 1024 × 1024 | 2048 × 2048 | |
Method | |||||
Zernike 100 | 0.74 | 3.59 | 15.32 | 52.73 | |
DFT + Zernike 50 | 0.28 | 1.39 | 5.41 | 21.35 | |
SS + Zernike 50 | 0.30 | 1.39 | 5.50 | 21.63 | |
PWD + Zernike 50 | 0.30 | 1.48 | 5.64 | 21.97 | |
SU + Zernike 50 | 0.30 | 1.37 | 5.40 | 21.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, R.; Wang, K.; Tang, X.; Wang, X. Investigation of Oceanic Turbulence Random Phase Screen Generation Methods for UWOC. Photonics 2023, 10, 832. https://doi.org/10.3390/photonics10070832
Jiang R, Wang K, Tang X, Wang X. Investigation of Oceanic Turbulence Random Phase Screen Generation Methods for UWOC. Photonics. 2023; 10(7):832. https://doi.org/10.3390/photonics10070832
Chicago/Turabian StyleJiang, Ruixian, Kexin Wang, Xinke Tang, and Xu Wang. 2023. "Investigation of Oceanic Turbulence Random Phase Screen Generation Methods for UWOC" Photonics 10, no. 7: 832. https://doi.org/10.3390/photonics10070832
APA StyleJiang, R., Wang, K., Tang, X., & Wang, X. (2023). Investigation of Oceanic Turbulence Random Phase Screen Generation Methods for UWOC. Photonics, 10(7), 832. https://doi.org/10.3390/photonics10070832