A Deep Echo State Network-Based Novel Signal Processing Approach for Underwater Wireless Optical Communication System with PAM and OFDM Signals
Abstract
:1. Introduction
2. Experiment Setup
2.1. Underwater Optical Wireless Communications System
2.2. Deep Echo State Network (DeepESN) Offline Training and Compensation
- For the first reservoir layer (i = 1):
- 2.
- For the rest of reservoir layers (i > 1):
2.3. Deep Echo State Network (DeepESN) Performance Study
3. Experiment Results
3.1. PAM Modulation
3.2. QAM-OFDM Modulation
3.3. The Performance Study of the Reservoir Size (U)
3.4. The Performance Study of the Number of Recurrent Layers (L) and Timing Cost
4. Discussion
4.1. DeepESN Processing for PAM and QAM-OFDM Signal
4.2. The Study of DeepESN Configurations on the UWOC System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Pompili, D.; Akyildiz, I.F. Overview of networking protocols for underwater wireless communications. IEEE Commun. Mag. 2009, 47, 97–102. [Google Scholar] [CrossRef]
- Hosseini, E.S.; Chakraborty, M.; Roe, J.; Petillot, Y.; Dahiya, R.S. Porous Elastomer Based Wide Range Flexible Pressure Sensor for Autonomous Underwater Vehicles. IEEE Sens. J. 2022, 22, 9914–9921. [Google Scholar] [CrossRef]
- Willners, J.S.; Carlucho, I.; Łuczyński, T.; Katagiri, S.; Lemoine, C.; Roe, J.; Stephens, D.; Xu, S.; Carreno, Y.; Pairet, È.; et al. From market-ready ROVs to low-cost AUVs. arXiv 2021, arXiv:2108.05792. [Google Scholar]
- Manjakkal, L.; Mitra, S.; Petillot, Y.R.; Shutler, J.; Scott, E.M.; Willander, M.; Dahiya, R. Connected Sensors, Innovative Sensor Deployment, and Intelligent Data Analysis for Online Water Quality Monitoring. IEEE Internet Things J. 2021, 8, 13805–13824. [Google Scholar] [CrossRef]
- Mourya, R.; Dragone, M.; Petillot, Y. Robust Silent Localization of Underwater Acoustic Sensor Network Using Mobile Anchor(s). Sensors 2021, 21, 727. [Google Scholar] [CrossRef]
- Mourya, R.; Saafin, W.; Dragone, M.; Petillot, Y. Ocean Monitoring Framework based on Compressive Sensing using Acoustic Sensor Networks. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–10. [Google Scholar]
- Campagnaro, F.; Signori, A.; Zorzi, M. Wireless Remote Control for Underwater Vehicles. J. Mar. Sci. Eng. 2020, 8, 736. [Google Scholar] [CrossRef]
- Aalsalem, M.Y.; Khan, W.Z.; Gharibi, W.; Khan, M.K.; Arshad, Q. Wireless Sensor Networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges. J. Netw. Comput. Appl. 2018, 113, 87–97. [Google Scholar] [CrossRef]
- Salhaoui, M.; Molina-Molina, J.C.; Guerrero-González, A.; Arioua, M.; Ortiz, F.J. Autonomous Underwater Monitoring System for Detecting Life on the Seabed by Means of Computer Vision Cloud Services. Remote Sens. 2020, 12, 1981. [Google Scholar] [CrossRef]
- Che, X.; Wells, I.; Dickers, G.; Kear, P.; Gong, X. Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Commun. Mag. 2010, 48, 143–151. [Google Scholar] [CrossRef]
- Song, G.; Xu, J. Review on Long-distance Underwater Wireless Optical Communication. In Proceedings of the 2021 19th International Conference on Optical Communications and Networks (ICOCN), Qufu, China, 23–27 August 2021; pp. 1–4. [Google Scholar]
- Chen, H.; Chen, X.; Lu, J.; Liu, X.; Shi, J.; Zheng, L.; Liu, R.; Zhou, X.; Tian, P. Toward Long-Distance Underwater Wireless Optical Communication Based on A High-Sensitivity Single Photon Avalanche Diode. IEEE Photonics J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Farr, N.; Ware, J.; Pontbriand, C.; Hammar, T.; Tivey, M. Optical communication system expands CORK seafloor observatory’s bandwidth. In Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, USA, 20–23 September 2010; pp. 1–6. [Google Scholar]
- Ramavath, P.N.; Acharya Udupi, S.; Krishnan, P. High-speed and reliable Underwater Wireless Optical Communication system using Multiple-Input Multiple-Output and channel coding techniques for IoUT applications. Opt. Commun. 2020, 461, 125229. [Google Scholar] [CrossRef]
- Shen, C.; Guo, Y.; Oubei, H.M.; Ng, T.K.; Liu, G.; Park, K.-H.; Ho, K.-T.; Alouini, M.-S.; Ooi, B.S. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate. Opt. Express 2016, 24, 25502–25509. [Google Scholar] [CrossRef]
- Liu, X.; Yi, S.; Zhou, X.; Zhang, S.; Fang, Z.; Qiu, Z.-J.; Hu, L.; Cong, C.; Zheng, L.; Liu, R.; et al. Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting. Opt. Express 2018, 26, 19259–19274. [Google Scholar] [CrossRef]
- Ge, W.; Du, Z.; Cai, C.; Song, G.; Qin, S.; Wang, H.; Zhang, T.; Xu, J. 90-m/560-Mbps underwater wireless optical communication utilizing subband multiple-mode full permutation CAP combined with an SNR-weighted detector and multi-channel DFE. Opt. Express 2023, 31, 13154–13168. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Barner, J.; Paparao, P. Design of least-mean-square based adaptive optical equalizers. Opt. Commun. 1992, 91, 280–292. [Google Scholar] [CrossRef]
- Cannizzaro, R.C.; Banelli, P.; Leus, G. Adaptive Channel Estimation for OFDM Systems with Doppler spread. In Proceedings of the 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications, Cannes, France, 2–5 July 2006; pp. 1–5. [Google Scholar]
- Zhang, Q. Some Implementation Aspects of Sliding Window Least Squares Algorithms. IFAC Proc. Vol. 2000, 33, 763–768. [Google Scholar] [CrossRef]
- Jiang, R.; Sun, C.; Zhang, L.; Tang, X.; Wang, H.; Zhang, A. Deep Learning Aided Signal Detection for SPAD-Based Underwater Optical Wireless Communications. IEEE Access 2020, 8, 20363–20374. [Google Scholar] [CrossRef]
- Kechriotis, G.; Zervas, E.; Manolakos, E.S. Using recurrent neural networks for adaptive communication channel equalization. IEEE Trans. Neural Netw. 1994, 5, 267–278. [Google Scholar] [CrossRef]
- Mata, J.; de Miguel, I.; Durán, R.J.; Merayo, N.; Singh, S.K.; Jukan, A.; Chamania, M. Artificial intelligence (AI) methods in optical networks: A comprehensive survey. Opt. Switch. Netw. 2018, 28, 43–57. [Google Scholar] [CrossRef]
- Yang, X.; Tong, Z.; Dai, Y.; Chen, X.; Zhang, H.; Zou, H.; Xu, J. 100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors. Opt. Commun. 2021, 498, 127261. [Google Scholar] [CrossRef]
- Junejo, N.U.; Esmaiel, H.; Sun, H.; Qasem, Z.A.H.; Wang, J. Pilot-Based Adaptive Channel Estimation for Underwater Spatial Modulation Technologies. Symmetry 2019, 11, 711. [Google Scholar] [CrossRef] [Green Version]
- Amirabadi, M.A. A Survey on Machine Learning for Optical Communication [Machine Learning View]. arXiv 2019, arXiv:1909.05148. [Google Scholar]
- Trichili, A.; Issaid, C.B.; Ooi, B.S.; Alouini, M.S. A CNN-Based Structured Light Communication Scheme for Internet of Underwater Things Applications. IEEE Internet Things J. 2020, 7, 10038–10047. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Hu, F.; Li, G.; Zou, P.; Wang, C.; Chi, N. Convolution-Enhanced LSTM Neural Network Post-Equalizer used in Probabilistic Shaped Underwater VLC System. In Proceedings of the 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Macau, China, 21–23 August 2020; pp. 1–5. [Google Scholar]
- Haigh, P.A.; Bausi, F.; Kanesan, T.; Le, S.T.; Rajbhandari, S.; Ghassemlooy, Z.; Papakonstantinou, I.; Popoola, W.; Burton, A.; Minh, H.L.; et al. A 20-Mb/s VLC Link With a Polymer LED and a Multilayer Perceptron Equalizer. IEEE Photonics Technol. Lett. 2014, 26, 1975–1978. [Google Scholar] [CrossRef]
- Doya, K. Bifurcations in the learning of recurrent neural networks. In Proceedings of the 1992 IEEE International Symposium on Circuits and Systems, San Diego, CA, USA, 10–13 May 1992; Volume 2776, pp. 2777–2780. [Google Scholar]
- Chatzis, S.P.; Demiris, Y. The copula echo state network. Pattern Recognit. 2012, 45, 570–577. [Google Scholar] [CrossRef]
- Jaeger, H. Adaptive nonlinear system identification with Echo state networks. In Proceedings of the 15th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 10–13 December 2002; pp. 609–616. [Google Scholar]
- Tiňo, P.; Hammer, B.; Bodén, M. Markovian Bias of Neural-based Architectures With Feedback Connections. In Perspectives of Neural-Symbolic Integration; Hammer, B., Hitzler, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 95–133. [Google Scholar]
- Gallicchio, C.; Micheli, A. Architectural and Markovian factors of echo state networks. Neural Netw. 2011, 24, 440–456. [Google Scholar] [CrossRef]
- Yildiz, I.B.; Jaeger, H.; Kiebel, S.J. Re-visiting the echo state property. Neural Netw. 2012, 35, 1–9. [Google Scholar] [CrossRef]
- Onasami, O.; Feng, M.; Xu, H.; Haile, M.; Qian, L. Underwater Acoustic Communication Channel Modeling Using Reservoir Computing. IEEE Access 2022, 10, 56550–56563. [Google Scholar] [CrossRef]
- Gallicchio, C.; Micheli, A.; Pedrelli, L. Design of deep echo state networks. Neural Netw. 2018, 108, 33–47. [Google Scholar] [CrossRef]
- Gallicchio, C.; Micheli, A. Deep Echo State Network (DeepESN): A Brief Survey. arXiv 2017, arXiv:1712.04323. [Google Scholar]
- Gallicchio, C.; Micheli, A.; Pedrelli, L. Deep reservoir computing: A critical experimental analysis. Neurocomputing 2017, 268, 87–99. [Google Scholar] [CrossRef]
- Gallicchio, C.; Micheli, A. Deep Tree Echo State Networks. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Gallicchio, C.; Micheli, A. Experimental Analysis of Deep Echo State Networks for Ambient Assisted Living. In Proceedings of the 16th International Conference of the Italian Association for Artificial Intelligence, Bari, Italy, 14–17 November 2017. [Google Scholar]
- Gallicchio, C.; Micheli, A. Why Layering in Recurrent Neural Networks? A DeepESN Survey. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Gallicchio, C.; Micheli, A.; Pedrelli, L. Deep Echo State Networks for Diagnosis of Parkinson’s Disease. arXiv 2018, arXiv:1802.06708. [Google Scholar]
- Li, Q.; Wu, Z.; Ling, R.; Feng, L.; Liu, K. Multi-reservoir echo state computing for solar irradiance prediction: A fast yet efficient deep learning approach. Appl. Soft Comput. 2020, 95, 106481. [Google Scholar] [CrossRef]
- Ser, J.D.; Laña, I.; Manibardo, E.L.; Oregi, I.; Osaba, E.; Lobo, J.L.; Bilbao, M.N.; Vlahogianni, E.I. Deep Echo State Networks for Short-Term Traffic Forecasting: Performance Comparison and Statistical Assessment. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–6. [Google Scholar]
- Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149. [Google Scholar] [CrossRef]
- Liu, X.; Chen, M.; Yin, C.; Saad, W. Analysis of Memory Capacity for Deep Echo State Networks. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 443–448. [Google Scholar]
- Chen, M.; Semiari, O.; Saad, W.; Liu, X.; Yin, C. Federated Echo State Learning for Minimizing Breaks in Presence in Wireless Virtual Reality Networks. IEEE Trans. Wirel. Commun. 2020, 19, 177–191. [Google Scholar] [CrossRef]
- Gallicchio, C.; Micheli, A. Echo State Property of Deep Reservoir Computing Networks. Cogn. Comput. 2017, 9, 337–350. [Google Scholar] [CrossRef]
- Chen, M.; Saad, W.; Yin, C.; Debbah, M. Echo State Networks for Proactive Caching in Cloud-Based Radio Access Networks With Mobile Users. IEEE Trans. Wirel. Commun. 2017, 16, 3520–3535. [Google Scholar] [CrossRef]
- Tian, T.; Wu, F.; Yang, K. Estimation of Underwater Acoustic Channel via Block-Sparse Recursive Least-Squares Algorithm. In Proceedings of the 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 20–22 September 2019; pp. 1–6. [Google Scholar]
- Tang, X.; Kumar, R.; Sun, C.; Zhang, L.; Chen, Z.; Jiang, R.; Wang, H.; Zhang, A. Towards underwater coherent optical wireless communications using a simplified detection scheme. Opt. Express 2021, 29, 19340–19351. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Gao, Y.; Dragone, M.; Petillot, Y.; Wang, X. A Deep Echo State Network-Based Novel Signal Processing Approach for Underwater Wireless Optical Communication System with PAM and OFDM Signals. Photonics 2023, 10, 763. https://doi.org/10.3390/photonics10070763
Wang K, Gao Y, Dragone M, Petillot Y, Wang X. A Deep Echo State Network-Based Novel Signal Processing Approach for Underwater Wireless Optical Communication System with PAM and OFDM Signals. Photonics. 2023; 10(7):763. https://doi.org/10.3390/photonics10070763
Chicago/Turabian StyleWang, Kexin, Yihong Gao, Mauro Dragone, Yvan Petillot, and Xu Wang. 2023. "A Deep Echo State Network-Based Novel Signal Processing Approach for Underwater Wireless Optical Communication System with PAM and OFDM Signals" Photonics 10, no. 7: 763. https://doi.org/10.3390/photonics10070763
APA StyleWang, K., Gao, Y., Dragone, M., Petillot, Y., & Wang, X. (2023). A Deep Echo State Network-Based Novel Signal Processing Approach for Underwater Wireless Optical Communication System with PAM and OFDM Signals. Photonics, 10(7), 763. https://doi.org/10.3390/photonics10070763