Study on Cortisol Sensing Principle Based on Fluorophore and Aptamer Competitive Assay on Polymer Optical Fiber
Abstract
:1. Introduction
2. Sensing Principle
3. Fabrication
3.1. Materials
3.2. Labeling of Cortisol
3.3. Synthesis of Hydrogel Containing Aptamer and Tagged Cortisol and Porosity Test of Hydrogel
3.4. Components of Sensing Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janting, J.; Inglev, R. Towards an online polymer optical fiber cortisol sensor for aquaculture. In Proceedings of the 27th International Conference on Optical Fiber Sensors, The Westin Alexandria, VA, USA, 8–12 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron. 2014, 53, 499–512. [Google Scholar] [CrossRef]
- Mota, V.C.; Martins, C.I.M.; Eding, E.H.; Canário, A.V.M.; Verreth, J.A.J. Water cortisol and testosterone in Nile tilapia (Oreochromis niloticus) recirculating aquaculture systems. Aquaculture 2017, 468, 255–261. [Google Scholar] [CrossRef]
- Usha, S.P.; Shrivastav, A.M.; Gupta, B.D. A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film. Biosens. Bioelectron. 2017, 87, 178–186. [Google Scholar] [CrossRef]
- Fanouraki, E.; Papandroulakis, N.; Ellis, T.; Mylonas, C.C.; Scott, A.P.; Pavlidis, M. Water Cortisol Is a Reliable Indicator of Stress in European Sea Bass, Dicentrarchus labrax. Behaviour. Bioacti. 2017, 145, 1267–1281. [Google Scholar]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. TrAC—Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Ali, M.H.; Elsherbiny, M.E.; Emara, M. Updates on aptamer research. Int. J. Mol. Sci. 2019, 20, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Pickup, J.C.; Hussain, F.; Evans, N.D.; Rolinski, O.J.; Birch, D.J.S. Fluorescence-based glucose sensors. Biosens. Bioelectron. 2005, 20, 2555–2565. [Google Scholar] [CrossRef]
- Zhong, W. Nanomaterials in fluorescence-based biosensing. Anal. Bioanal. Chem. 2009, 394, 47–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jepsen, M.D.; Sparvath, S.M.; Nielsen, T.B.; Langvad, A.H.; Grossi, G.; Gothelf, K.V.; Andersen, E.S. Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat. Commun. 2018, 9, 18. [Google Scholar] [CrossRef]
- Pehlivan, Z.S.; Torabfam, M.; Kurt, H.; Ow-Yang, C.; Hildebrandt, N.; Yüce, M. Aptamer and nanomaterial based FRET biosensors: A review on recent advances (2014–2019). Microchim. Acta 2019, 186, 563. [Google Scholar] [CrossRef]
- Hendrickson, O.D.; Taranova, N.A.; Zherdev, A.V.; Dzantiev, B.B.; Eremin, S.A. Fluorescence polarization-based bioassays: New horizons. Sensors 2020, 20, 7132. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Aguado, J.A.; Penner, G. Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal. Chem. 2008, 80, 8853–8855. [Google Scholar] [CrossRef] [PubMed]
- Trettnak, W. Optical sensors based on fluorescence quenching. In Fluorescence Spectroscopy: New Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1993; pp. 79–89. [Google Scholar] [CrossRef]
- Geddes, C.D. Optical halide sensing using fluorescence quenching: Theory, simulations and applications—A review. Meas. Sci. Technol. 2001, 12, R53–R88. [Google Scholar] [CrossRef] [Green Version]
- Baylakoğlu, I.; Fortier, A.; Kyeong, S.; Ambat, R.; Conseil-Gudla, H.; Azarian, M.H.; Pecht, M.G. The detrimental effects of water on electronic devices. Adv. Electr. Electron. Eng. 2021, 1, 100016. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, C.; Feng, G.; Fang, J. Hospitals and laboratories on paper-based sensors: A Mini Review. Sensors 2021, 21, 5998. [Google Scholar] [CrossRef]
- Dalirirad, S.; Steckl, A.J. Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sens. Actuators B Chem. 2019, 283, 79–86. [Google Scholar] [CrossRef]
- Semwal, V.; Shrivastav, A.M.; Verma, R.; Gupta, B.D. Surface plasmon resonance based fiber optic ethanol sensor using layers of silver/silicon/hydrogel entrapped with ADH/NAD. Sens. Actuators B Chem. 2016, 230, 485–492. [Google Scholar] [CrossRef]
- Shima, D.; Daewoo, H.; Andrew, S.J. Aptamer-Based Lateral Flow Biosensor for Rapid Detection of Salivary Cortisol. ACS Omega 2020, 5, 32890–32898. [Google Scholar]
- Roushani, M.; Hosseini, H.; Hajinia, Z.; Rahmati, Z. Rationally designed of hollow nitrogen doped carbon nanotubes double shelled with hierarchical nickel hydroxide nanosheet as a high performance surface substrate for cortisol aptasensing. Electrochim. Acta 2021, 388, 138608. [Google Scholar] [CrossRef]
- Pali, M.; Jagannath, B.; Lin, K.C.; Upasham, S.; Sankhalab, S.; Upashama, S.; Muthukumar, S.; Prasad, S. CATCH (Cortisol Apta WATCH): ‘Bio-mimic alarm’ to track Anxiety, Stress, Immunity in human sweat. Electrochim. Acta. 2021, 390, 138834. [Google Scholar] [CrossRef]
- Niu, C.; Ding, Y.; Zhang, C.; Liu, J. Comparing two cortisol aptamers for label-free fluorescent and colorimetric biosensors. Sens. Diagn. 2022, 1, 541–549. [Google Scholar] [CrossRef]
Technique | Sensitivity | Response Time | Merits | Limitations | Ref. |
---|---|---|---|---|---|
Lateral Flow assay | ng/L | 15–20 min | Rapid screening, disposable, good for biofluids | Not feasible for online measurements, wet environment and non-reusable. | [21] |
Electrochemical | ng/L | ~hours | Good selectivity | Not feasible for wet environment, complex instrumentations. | [22] |
Impedance spectroscopy | ng/mL | Not mentioned | Real-time, continuous monitoring, reusable | Not feasible for wet environment, complex instrumentations. | [23] |
Colorimetric | ng/L | 20–30 min | Simple, low cost | Not feasible for online measurements, wet environment and non-reusable. Need a lot of optimizations | [24] |
Fluorophore/aptamer-based competitive assay | µg/mL | ~hours | Simple, low cost, robust, feasible for online measurements, remote sensing and wet environment | Need gel thickness optimization, non-reusable. | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semwal, V.; Højgaard, J.; Møller, E.; Bang, O.; Janting, J. Study on Cortisol Sensing Principle Based on Fluorophore and Aptamer Competitive Assay on Polymer Optical Fiber. Photonics 2023, 10, 840. https://doi.org/10.3390/photonics10070840
Semwal V, Højgaard J, Møller E, Bang O, Janting J. Study on Cortisol Sensing Principle Based on Fluorophore and Aptamer Competitive Assay on Polymer Optical Fiber. Photonics. 2023; 10(7):840. https://doi.org/10.3390/photonics10070840
Chicago/Turabian StyleSemwal, Vivek, Jonas Højgaard, Emil Møller, Ole Bang, and Jakob Janting. 2023. "Study on Cortisol Sensing Principle Based on Fluorophore and Aptamer Competitive Assay on Polymer Optical Fiber" Photonics 10, no. 7: 840. https://doi.org/10.3390/photonics10070840
APA StyleSemwal, V., Højgaard, J., Møller, E., Bang, O., & Janting, J. (2023). Study on Cortisol Sensing Principle Based on Fluorophore and Aptamer Competitive Assay on Polymer Optical Fiber. Photonics, 10(7), 840. https://doi.org/10.3390/photonics10070840