Immobilized Sorption-Colorimetric Microprobes for Chemical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Methods
3. Results and Discussion
3.1. Peculiarities of Recording the Colorimetric Signal of Microprobes
3.2. Prospects for the Analytical Application of Microprobes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bol’shov, M.A.; Karandashev, V.K.; Tsisin, G.I.; Zolotov, Y.A. Flow methods for the determination of elements in solutions based on sorption preconcentration and inductively coupled plasma mass spectrometry. J. Anal. Chem. 2011, 66, 548–564. [Google Scholar] [CrossRef]
- Borisova, D.R.; Statkus, M.A.; Tsysin, G.I.; Zolotov, Y.A. On-line coupling of solid-phase extraction of phenols on porous graphitic carbon and LC separation on C18 silica gel column via subcritical water desorption. Sep. Sci. Technol. 2016, 51, 1979–1985. [Google Scholar] [CrossRef]
- Tsizin, G.I.; Statkus, M.A.; Zolotov, Y.A. Preconcentration of organic substances on low-polar adsorbents in the flow systems of analysis. J. Anal. Chem. 2018, 73, 1030–1042. [Google Scholar] [CrossRef]
- Tsizin, G.; Statkus, M. Sorption Preconcentration of Microcomponents under Dynamic Conditions; LENAND: Moscow, Russia, 2016; 480p. (In Russian) [Google Scholar]
- Amelin, V.G.; Shogaha, Z.A.C.; Bol’shakov, D.S. Using a smartphone for determining tetracyclines in water and milk by the sensitized solid state fluorescence of europium on its hydroxide. J. Anal. Chem. 2021, 76, 1211–1216. [Google Scholar] [CrossRef]
- Amelin, V.G.; Shogah, Z.A.C.; Bolshakov, D.S. Microextraction-colometric determination and identification of penicillin antibiotics in medicines using a smartphone and chemometric analysis. Mosc. Univ. Chem. Bull. 2022, 77, 163–170. [Google Scholar] [CrossRef]
- Asha, K.S.; Bhattacharjee, R.; Mandal, S. Complete transmetalation in a metal–organic framework by metal ion metathesis in a single crystal for selective sensing of phosphate ions in aqueous media. Angew. Chem. Int. 2016, 55, 11528–11532. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Li, H.; Ling, Y.; Lin, Y.; Lei, Y.; Jin, L.; Yu, H.; He, Y. Imaging adsorption of iodide on single Cu2O microparticles reveals the acid activation mechanism. J. Hazard. Mater. 2021, 420, 126539. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, G.; Zhang, Q.; Yu, L.; Li, H.; Yu, H.; He, Y. Visualization of gaseous iodine adsorption on single zeolitic imidazolate framework-90 particles. Nat. Commun. 2021, 12, 4483. [Google Scholar] [CrossRef] [PubMed]
- Rademann, J.; Barth, M.; Brock, R.; Egelhaaf, H.-J.; Jung, G. Spatially resolved single bead analysis: Homogeneity, diffusion, and adsorption in cross-linked polystyrene. Chem. Eur. J. 2001, 7, 3884–3889. [Google Scholar] [CrossRef]
- Monogarova, O.V.; Oskolok, K.V.; Apyari, V.V. Colorimetry in chemical analysis. J. Anal. Chem. 2018, 73, 1076–1084. [Google Scholar] [CrossRef]
- Apyari, V.V.; Gorbunova, M.V.; Isachenko, A.I.; Dmitrienko, S.G.; Zolotov, Y.A. Use of household color-recording devices in quantitative chemical analysis. J. Anal. Chem. 2017, 72, 1127–1137. [Google Scholar] [CrossRef]
- Duangdeewong, C.; Sitanurak, J.; Wilairat, P.; Nacapricha, D.; Teerasong, S. Microfluidic paper-based analytical device for convenient use in measurement of iodate in table salt and irrigation water. Microchem. J. 2020, 152, 104447. [Google Scholar] [CrossRef]
- Akrivi, E.A.; Vlessidis, A.G.; Giokas, D.L.; Kourkoumelis, N. Gold-modified micellar composites as colorimetric probes for the determination of low molecular weight thiols in biological fluids using consumer electronic devices. Appl. Sci. 2021, 11, 2705. [Google Scholar] [CrossRef]
- Giokas, D.L.; Prodromidis, M.I. From the bench to the hand: Point of need/point of care technologies and analytical assays for field testing and medical diagnostics. Microchim. Acta 2022, 189, 280. [Google Scholar] [CrossRef]
- Monogarova, O.V.; Chaplenko, A.A.; Oskolok, K.V. Multisensory colorimetric analysis of drugs dydrogesterone, troxerutin and ademetionine using barcodes. J. Pharm. Pharmacol. 2021, 9, 64–72. [Google Scholar] [CrossRef]
- Santos, V.B.; da Silva, E.K.N.; de Oliveira, L.M.A.; Suarez, W.T. Low cost in situ digital image method, based on spot testing and smartphone images, for determination of ascorbic acid in Brazilian Amazon native and exotic fruits. Food Chem. 2019, 285, 340–346. [Google Scholar] [CrossRef]
- Pessoa, K.D.; Suarez, W.T.; dos Reis, M.F.; Franco, M.O.K.; Moreira, R.P.L.; dos Santos, V.B. A digital image method of spot tests for determination of copper in sugar cane spirits. Specrochim. Acta A 2017, 185, 310–316. [Google Scholar] [CrossRef]
- Tikhomirova, T.I.; Ramazanova, G.R.; Apyari, V.V. Effect of nature and structure of synthetic anionic food dyes on their sorption onto different sorbents: Peculiarities and prospects. Microchem. J. 2018, 143, 305–311. [Google Scholar] [CrossRef]
- Schults, E.V.; Monogarova, O.V.; Oskolok, K.V. Digital colorimetry: Analytical possibilities and prospects of use. Mosc. Univ. Chem. Bull. 2019, 74, 55–62. [Google Scholar] [CrossRef]
- Tikhomirova, T.I.; Ramazanova, G.R.; Apyari, V.V. Sorption of Ponceau 4R anionic dye from aqueous solutions on aluminum oxide and polyurethane foam. Russ. J. Phys. Chem. 2014, 88, 2192–2196. [Google Scholar] [CrossRef]
- Ramazanova, G.R.; Tikhomirova, T.I.; Apyari, V.V. Sorption of food dyes on polyurethane foam and aluminum oxide. Mosc. Univ. Chem. Bull. 2013, 68, 175–180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalev, S.; Tikhomirova, T.; Apyari, V. Immobilized Sorption-Colorimetric Microprobes for Chemical Analysis. Photonics 2023, 10, 787. https://doi.org/10.3390/photonics10070787
Kovalev S, Tikhomirova T, Apyari V. Immobilized Sorption-Colorimetric Microprobes for Chemical Analysis. Photonics. 2023; 10(7):787. https://doi.org/10.3390/photonics10070787
Chicago/Turabian StyleKovalev, Sergey, Tatyana Tikhomirova, and Vladimir Apyari. 2023. "Immobilized Sorption-Colorimetric Microprobes for Chemical Analysis" Photonics 10, no. 7: 787. https://doi.org/10.3390/photonics10070787
APA StyleKovalev, S., Tikhomirova, T., & Apyari, V. (2023). Immobilized Sorption-Colorimetric Microprobes for Chemical Analysis. Photonics, 10(7), 787. https://doi.org/10.3390/photonics10070787