Multi-Scale Cyclic Image Deblurring Based on PVC-Resnet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. Multi-Scale Cyclic Deblurring Model Based on PVC-Resnet
2.2.1. Backbone Network Design
2.2.2. Multi-Scale Feature Extraction Module
2.2.3. PVC-Resnet Module
2.2.4. Loss Function
3. Experiment and Analysis
3.1. Experimental Environment and Parameter Settings
3.2. Evaluation Indicators
3.3. Analysis and Comparison of Experimental Results
3.3.1. Ablation Experiment
3.3.2. Comparative Analysis of Performance of Different Deblurring Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vel, R.; Bhatt, A.; Priyanka, A.; Gauthaman, A.; Anilkumar, V.; Safeena, A.S.; Ranjith, S. DEAE-Cellulose-based composite hydrogel for 3D printing application: Physicochemical, mechanical, and biological optimization. Mater. Today Commun. 2022, 33, 104335. [Google Scholar] [CrossRef]
- Gu, S.H.; Yu, C.H.; Song, Y.; Kim, N.Y.; Sim, E.; Choi, J.Y.; Song, D.H.; Hur, G.H.; Shin, Y.K.; Jeong, S.T. A small interfering RNA lead targeting RNA-dependent RNA-polymerase effectively inhibit the SARS-CoV-2 infection in golden syrian hamster and rhesus macaque. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zang, K.; Hui, L.; Wang, M.; Huang, Y.; Zhu, X.; Yao, B. TIM-3 as a prognostic marker and a potential immunotherapy target in human malignant tumors: A meta-analysis and bioinformatics validation. Front. Oncol. 2021, 11, 579351. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Brady, D.J.; Zheng, G.; Tian, L.; Gao, L. Review of bio-optical imaging systems with a high space-bandwidth product. Adv. Photonics 2021, 3, 044001. [Google Scholar] [CrossRef] [PubMed]
- Harmeling, S.; Hirsch, M.; Schölkopf, B. Space-variant single-image blind deconvolution for removing camera shake. In Proceedings of the 23rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–9 December 2010; pp. 829–837. [Google Scholar]
- Hirsch, M.; Schuler, C.J.; Harmeling, S.; Schölkopf, B. Fast removal of non-uniform camera shake. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV 2011), Barcelona, Spain, 6–13 November 2011; pp. 463–470. [Google Scholar]
- Gupta, A.; Joshi, N.; Zitnick, C.L.; Cohen, M.; Curless, B. Single image deblurring using motion density functions. In Proceedings of the the 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; pp. 171–184. [Google Scholar]
- Torres, G.F.; Kämäräinen, J. Depth-Aware Image Compositing Model for Parallax Camera Motion Blur. In Proceedings of the Scandinavian Conference on Image Analysis, Levi, Finland, 18–21 April 2023; pp. 279–296. [Google Scholar]
- Xu, L.; Zheng, S.C.; Jia, J.Y. Unnatural L0 sparse representation for natural image deblurring. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1107–1114. [Google Scholar]
- Zhou, M.; Huang, J.; Guo, C.L.; Li, C. Fourmer: An Efficient Global Modeling Paradigm for Image Restoration. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 June 2023; pp. 42589–42601. [Google Scholar]
- Hayashi, T.; Tsubouchi, T. Estimation and sharpening of blur in degraded images captured by a camera on a moving object. Sensors 2022, 22, 1635. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ouyang, S.; Shen, Y.; Chen, X. Ternary Optical Computer: An Overview and Recent Developments. In Proceedings of the 2021 12th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Xi’an, China, 10–12 December 2021; pp. 82–87. [Google Scholar]
- Berger, K.; Machwitz, M.; Kycko, M.; Kefauver, S.C.; Van Wittenberghe, S.; Gerhards, M.; Verrelst, J.; Atzberger, C.; van der Tol, C.; Damm, A.; et al. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote Sens. Environ. 2022, 280, 113198. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, H.; Zhu, H.; Chen, X.; Wang, Y. Pixel-wise Phase Unwrapping with Adaptive Reference Phase Estimation for 3-D Shape Measurement. IEEE Trans. Instrum. Meas. 2023, 72, 5006309. [Google Scholar] [CrossRef]
- Benea-Chelmus, I.C.; Meretska, M.L.; Elder, D.L.; Tamagnone, M.; Dalton, L.R.; Capasso, F. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun. 2021, 12, 5928. [Google Scholar] [CrossRef] [PubMed]
- Adabi, S.; Rashedi, E.; Clayton, A.; Mohebbi-Kalkhoran, H.; Chen, X.W.; Conforto, S.; Nasiriavanaki, M. Learnable despeckling framework for optical coherence tomography images. J. Biomed. Opt. 2018, 23, 016013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Zhu, W.; Li, J.; Xu, G.; Chen, X.; Yao, C. Restoration of atmospheric turbulence-degraded short-exposure image based on convolution neural network. Photonics 2023, 10, 666. [Google Scholar] [CrossRef]
- Nah, S.; Kim, T.H.; Lee, K.M. Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 257–265. [Google Scholar]
- Tao, X.; Gao, H.Y.; Shen, X.Y.; Wang, J.; Jia, J.Y. Scale-Recurrent Network for Deep Image Deblurring. In Proceedings of the 2018 IEEE/CVF Conf. On Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8174–8182. [Google Scholar]
- Gao, H.Y.; Tao, X.; Shen, X.Y.; Jia, J.Y. Dynamic scene deblurring with parameter selective sharing and nested skip connections. In Proceedings of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3843–3851. [Google Scholar]
- Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. DeblurGAN: Blind motion deblurring using conditional adversarial networks. In Proceedings of the 2018 IEEE/CVF Conf. On Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8183–8192. [Google Scholar]
- Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Liu, J.; Shi, J.; Liu, W. Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM. Energy 2022, 246, 123403. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Z.; Hong, R.; Xu, M.; Yang, Y.; Wang, M. FCL-GAN: A lightweight and real-time baseline for unsupervised blind image deblurring. In Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 10–14 October 2022; pp. 6220–6229. [Google Scholar]
- Wightman, R.; Touvron, H.; Jégou, H. Resnet strikes back: An improved training procedure in timm. arXiv 2021, arXiv:2110.00476. [Google Scholar]
- Miao, M.; Zheng, L.; Xu, B.; Yang, Z.; Hu, W. A multiple frequency bands parallel spatial–temporal 3D deep residual learning framework for EEG-based emotion recognition. Biomed. Signal Process. Control. 2023, 79, 104141. [Google Scholar] [CrossRef]
- Cho, S.J.; Ji, S.W.; Hong, J.P.; Jung, S.W.; Ko, S.J. Rethinking coarse-to-fine approach in single image deblurring. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 4641–4650. [Google Scholar]
- Sharif, S.M.A.; Naqvi, R.A.; Mehmood, Z.; Hussain, J.; Ali, A.; Lee, S.W. MedDeblur: Medical Image Deblurring with Residual Dense Spatial-Asymmetric Attention. Mathematics 2022, 11, 115. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Wang, J.; Pan, C. Blur-kernel bound estimation from pyramid statistics. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 1012–1016. [Google Scholar] [CrossRef]
- Lin, H.; Ma, L.; Hu, Q.; Zhang, X.; Xiong, Z.; Han, H. Single image deblurring for pulsed laser range-gated imaging system with multi-slice Integration. Photonics 2022, 9, 642. [Google Scholar] [CrossRef]
- Suin, M.; Purohit, K.; Rajagopalan, A.N. Spatially-attentive patch-hierarchical network for adaptive motion deblurring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3606–3615. [Google Scholar]
Module Type | Conval Kernel Size | Step Size | Input Size | |
---|---|---|---|---|
Stage 0 | Conv2D + BN + Relu | 3 × 3 | 1 | 1280 × 720 × 3 |
Stage 1 | PVC-Resnet | 3 × 3, 1 × 1 | 1 | 1280 × 720 × 32 |
maxpooling | 3 × 3 | 2 | 1280 × 720 × 32 | |
Stage 2 | PVC-Resnet | 3 × 3, 1 × 1 | 1 | 640 × 360 × 64 |
maxpooling | 3 × 3 | 2 | 640 × 360 × 64 | |
Stage 3 | PVC-Resnet | 3 × 3, 1 × 1 | 1 | 320 × 180 × 128 |
maxpooling | 3 × 3 | 2 | 320 × 180 × 128 | |
Stage 4 | PVC-Resnet | 3 × 3, 1 × 1 | 1 | 160 × 80 × 256 |
maxpooling | 3 × 3 | 2 | 160 × 80 × 256 | |
Stage 5 | Conv2D + BN + Relu | 3 × 3 | 1 | 80 × 40 × 512 |
Conv2D + BN + Relu | 3 × 3 | 1 | 80 × 40 × 512 | |
Conv2D + BN + Relu | 3 × 3 | 1 | 80 × 40 × 512 | |
Conv2D + BN + Relu | 3 × 3 | 1 | 80 × 40 × 512 | |
Stage 6 | UpSampling2D | 2 × 2 | — | 80 × 40 × 512 |
Conv2D + BN + Relu | 3 × 3 | 1 | 160 × 80 × 256 | |
Concat | —— | — | 160 × 80 × 256 160 × 80 × 256 | |
Conv2D + BN + Relu | 3 × 3 | 1 | 160 × 80 × 256 | |
Stage 7 | UpSampling2D | 2 × 2 | — | 160 × 80 × 256 |
Conv2D + BN + Relu | 3 × 3 | 1 | 320 × 180 × 128 | |
Concat | —— | — | 320 × 180 × 128 320 × 180 × 128 | |
Conv2D + BN + Relu | 3 × 3 | 1 | 320 × 180 × 128 | |
Stage 8 | UpSampling2D | 2 × 2 | — | 320 × 180 × 128 |
Conv2D + BN + Relu | 3 × 3 | 1 | 640 × 360 × 64 | |
Concat | —— | — | 640 × 360 × 64 | |
Conv2D + BN + Relu | 3 × 3 | 1 | 640 × 360 × 64 | |
Stage 9 | UpSampling2D | 2 × 2 | — | 640 × 360 × 64 |
Conv2D + BN + Relu | 3 × 3 | 1 | 1280 × 720 × 32 | |
Concat | —— | — | 1280 × 720 × 32 1280 × 720 × 32 | |
Conv2D + BN + Relu | 3 × 3, 1 × 1 | 1 | 1280 × 720 × 3 |
Conv Layer | D | Size of Conv Kernel | Feeling Field |
---|---|---|---|
Conv-1 | 1 | 3 | 3 |
Conv-2 | 2 | 3 | 5 |
Conv-3 | 4 | 3 | 9 |
Gopro Dataset | Calibration Board Dataset | |||||||
---|---|---|---|---|---|---|---|---|
Model | SSIM-L1 + Resnet | L1 + PVC-Resnet | SSIM + PVC-Resnet | SSIM-L1 + PVC-Resnet | SSIM-L1 + Resnet | L1 + PVC-Resnet | SSIM + PVC-Resnet | SSIM-L1 + PVC-Resnet |
PSNR/dB | 28.34 | 28.19 | 30.76 | 31.29 | 29.70 | 32.91 | 33.64 | 34.38 |
SSIM | 0.8968 | 0.9075 | 0.9118 | 0.9142 | 0.9074 | 0.9296 | 0.9249 | 0.9327 |
Stat-SSIM | 0.8841 | 0.9106 | 0.9120 | 0.9226 | 0.8918 | 0.9115 | 0.9077 | 0.9271 |
Time/s | 0.2896 | 0.3029 | 0.2961 | 0.2957 | 0.2764 | 0.2986 | 0.2850 | 0.2814 |
Gopro Dataset | Calibration Board Dataset | |||||||
---|---|---|---|---|---|---|---|---|
Model | Nah | Kupyn | Cho S J | Ours | Nah | Kupyn | Cho S J | Ours |
PSNR/dB | 27.84 | 29.41 | 31.06 | 31.29 | 32.76 | 33.03 | 33.53 | 34.38 |
SSIM | 0.8915 | 0.9078 | 0.9093 | 0.9142 | 0.9274 | 0.9196 | 0.9282 | 0.9327 |
Stat-SSIM | 0.8866 | 0.9013 | 0.9179 | 0.9226 | 0.9095 | 0.9167 | 0.9255 | 0.9271 |
Time/s | 0.3376 | 0.1903 | 0.2382 | 0.2957 | 0.3162 | 0.1739 | 0.2053 | 0.2814 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Chen, M.; Zhu, D.; Liu, K.; Zhao, H.; Liao, J. Multi-Scale Cyclic Image Deblurring Based on PVC-Resnet. Photonics 2023, 10, 862. https://doi.org/10.3390/photonics10080862
Zhang K, Chen M, Zhu D, Liu K, Zhao H, Liao J. Multi-Scale Cyclic Image Deblurring Based on PVC-Resnet. Photonics. 2023; 10(8):862. https://doi.org/10.3390/photonics10080862
Chicago/Turabian StyleZhang, Kai, Minhui Chen, Dequan Zhu, Kaixuan Liu, Haonan Zhao, and Juan Liao. 2023. "Multi-Scale Cyclic Image Deblurring Based on PVC-Resnet" Photonics 10, no. 8: 862. https://doi.org/10.3390/photonics10080862
APA StyleZhang, K., Chen, M., Zhu, D., Liu, K., Zhao, H., & Liao, J. (2023). Multi-Scale Cyclic Image Deblurring Based on PVC-Resnet. Photonics, 10(8), 862. https://doi.org/10.3390/photonics10080862