Application of Terahertz Time-Domain Spectroscopy to Study the Microheterogeneities of Solutions: A Case Study of Aqueous Sugar Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Recording of Spectra Using THz-TDS Method
2.3. Subtracting the Contribution of Sugars from DS of Their Solutions
2.4. Preparation of Sugar Films and Determination of Their DS
2.5. Analysis of the DS of Aqueous Phase of Solutions
2.6. Measurement of Size Distributions of Optical Inhomogeneities in Solutions
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vuks, M.F.; Shurupova, L.V. The scattering of light and phase transition in solutions of tertiary butyl alcohol in water. Opt. Commun. 1972, 5, 277–278. [Google Scholar] [CrossRef]
- Sedlák, M. Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: I. Light Scattering Characterization. J. Phys. Chem. B 2006, 110, 4329–4338. [Google Scholar] [CrossRef] [PubMed]
- Sedlák, M. Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: II. Kinetics of the Formation and Long-Time Stability. J. Phys. Chem. B 2006, 110, 4339–4345. [Google Scholar] [CrossRef] [PubMed]
- Sedlák, M. Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids. III. Correlation with Molecular Properties and Interactions. J. Phys. Chem. B 2006, 110, 13976–13984. [Google Scholar] [CrossRef] [PubMed]
- Sedlák, M.; Rak, D. On the Origin of Mesoscale Structures in Aqueous Solutions of Tertiary Butyl Alcohol: The Mystery Resolved. J. Phys. Chem. B 2014, 118, 2726–2737. [Google Scholar] [CrossRef]
- Subramanian, D.; Ivanov, D.A.; Yudin, I.K.; Anisimov, M.A.; Sengers, J.V. Mesoscale Inhomogeneities in Aqueous Solutions of 3-Methylpyridine and Tertiary Butyl Alcohol. J. Chem. Eng. Data 2011, 56, 1238–1248. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Shkirin, A.V.; Lyakhov, G.A.; Kobelev, A.V.; Penkov, N.V.; Ugraitskaya, S.V.; Fesenko, E.E. Droplet-like heterogeneity of aqueous tetrahydrofuran solutions at the submicrometer scale. J. Chem. Phys. 2016, 145, 184501. [Google Scholar] [CrossRef]
- Subramanian, D.; Klauda, J.B.; Collings, P.J.; Anisimov, M.A. Mesoscale Phenomena in Ternary Solutions of Tertiary Butyl Alcohol, Water, and Propylene Oxide. J. Phys. Chem. B 2014, 118, 5994–6006. [Google Scholar] [CrossRef]
- Georgalis, Y.; Kierzek, A.M.; Saenger, W. Cluster Formation in Aqueous Electrolyte Solutions Observed by Dynamic Light Scattering. J. Phys. Chem. B 2000, 104, 3405–3406. [Google Scholar] [CrossRef]
- Jawor-Baczynska, A.; Moore, B.D.; Lee, H.S.; McCormick, A.V.; Sefcik, J. Population and size distribution of solute-rich mesospecies within mesostructured aqueous amino acid solutions. Faraday Discuss. 2013, 167, 425–440. [Google Scholar] [CrossRef]
- Hagmeyer, D.; Ruesing, J.; Fenske, T.; Klein, H.-W.; Schmuck, C.; Schrader, W.; da Piedade, M.E.M.; Epple, M. Direct experimental observation of the aggregation of α-amino acids into 100–200 nm clusters in aqueous solution. RSC Adv. 2012, 2, 4690–4696. [Google Scholar] [CrossRef]
- Subramanian, D.; Anisimov, M.A. Resolving the Mystery of Aqueous Solutions of Tertiary Butyl Alcohol. J. Phys. Chem. B 2011, 115, 9179–9183. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, K.; Fujiyama, T. Light-scattering study of clathrate hydrate formation in binary mixtures of tert-butyl alcohol and water. 2. Temperature effect. J. Phys. Chem. 1979, 83, 463–468. [Google Scholar] [CrossRef]
- Kostko, A.F.; Anisimov, M.A.; Sengers, J.V. Criticality in aqueous solutions of 3-methylpyridine and sodium bromide. Phys. Rev. E 2004, 70, 026118. [Google Scholar] [CrossRef]
- Jin, F.; Ye, J.; Hong, L.; Lam, H.; Wu, C. Slow Relaxation Mode in Mixtures of Water and Organic Molecules: Supramolecular Structures or Nanobubbles? J. Phys. Chem. B 2007, 111, 2255–2261. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Ye, X.; Wu, C. Observation of Kinetic and Structural Scalings during Slow Coalescence of Nanobubbles in an Aqueous Solution. J. Phys. Chem. B 2007, 111, 13143–13146. [Google Scholar] [CrossRef] [Green Version]
- Beer, C.W.; Jolly, D.J. Comments on “the scattering of light and phase transition in solutions of tertiary butyl alcohol in water”. Opt. Commun. 1974, 11, 150–151. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Lyakhov, G.A.; Shkirin, A.V.; Kobelev, A.V.; Penkov, N.V.; Ugraitskaya, S.V.; Fesenko, E.E., Jr. Study of the submicron heterogeneity of aqueous solutions of hydrogen-bond acceptor molecules by laser diagnostics methods. Phys. Wave Phenom. 2015, 23, 241–254. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Lyakhov, G.A.; Shkirin, A.V.; Krivokhizha, S.V.; Afonin, A.A.; Kobelev, A.V.; Penkov, N.V.; Fesenko, E.E. Laser diagnostics of the mesoscale heterogeneity of aqueous solutions of polar organic compounds. Phys. Wave Phenom. 2018, 26, 21–35. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Lyakhov, G.A.; Shkirin, A.V.; Ignatiev, P.S.; Kobelev, A.V.; Penkov, N.V.; Fesenko, E.E. Mesodroplet heterogeneity of low-concentration aqueous solutions of polar organic compounds. Phys. Wave Phenom. 2019, 27, 91–101. [Google Scholar] [CrossRef]
- Subramanian, D.; Boughter, C.T.; Klauda, J.B.; Hammouda, B.; Anisimov, M.A. Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules. Faraday Discuss. 2013, 167, 217–238. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, H.; Li, J.; Hao, J.; Zhang, L.; Hammouda, B.; Han, C.C. Large-Scale Structures in Tetrahydrofuran–Water Mixture with a Trace Amount of Antioxidant Butylhydroxytoluene (BHT). J. Phys. Chem. B 2011, 115, 7887–7895. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, C.; Liu, F.; Zhao, P.; Gu, Z.; Zhang, S. Covalent capture of supramolecular species in an aqueous solution of water-miscible small organic molecules. Phys. Chem. Chem. Phys. 2019, 21, 10477–10487. [Google Scholar] [CrossRef] [PubMed]
- Cainelli, G.; Galletti, P.; Giacomini, D. Solvent effects on stereoselectivity: More than just an environment. Chem. Soc. Rev. 2009, 38, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- Kononov, L.O.; Malysheva, N.N.; Orlova, A.V.; Zinin, A.I.; Laptinskaya, T.V.; Kononova, E.G.; Kolotyrkina, N.G. Concentration Dependence of Glycosylation Outcome: A Clue to Reproducibility and Understanding the Reasons Behind. Eur. J. Org. Chem. 2012, 2012, 1926–1934. [Google Scholar] [CrossRef]
- Kononov, L.O.; Malysheva, N.N.; Orlova, A.V. Stereoselectivity of Glycosylation May Change During the Reaction Course: Highly α-Stereoselective Sialylation Achieved by Supramer Approach. Eur. J. Org. Chem. 2009, 2009, 611–616. [Google Scholar] [CrossRef]
- Orlova, A.V.; Andrade, R.R.; da Silva, C.O.; Zinin, A.I.; Kononov, L.O. Polarimetry as a Tool for the Study of Solutions of Chiral Solutes. ChemPhysChem 2014, 15, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Heyden, M.; Ebbinghaus, S.; Havenith, M. Terahertz spectroscopy as a tool to study hydration dynamics. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 1–19. [Google Scholar] [CrossRef]
- Nibali, V.C.; Havenith, M. New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc. 2014, 136, 12800–12807. [Google Scholar] [CrossRef]
- Tielrooij, K.J.; Paparo, D.; Piatkowski, L.; Bakker, H.J.; Bonn, M. Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy. Biophys. J. 2009, 97, 2484–2492. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Wang, L.; Zhong, D. Dynamics and mechanism of ultrafast water–protein interactions. Proc. Natl. Acad. Sci. USA 2016, 113, 8424–8429. [Google Scholar] [CrossRef]
- Penkov, N.V. Peculiarities of the perturbation of water structure by ions with various hydration in concentrated solutions of CaCl2, CsCl, KBr, and KI. Phys. Wave Phenom. 2019, 27, 128–134. [Google Scholar] [CrossRef]
- Leitner, D.M.; Gruebele, M.; Havenith, M. Solvation dynamics of biomolecules: Modeling and terahertz experiments. HFSP J. 2008, 2, 314–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyden, M.; Tobias, D.J.; Matyushov, D.V. Terahertz absorption of dilute aqueous solutions. J. Chem. Phys. 2012, 137, 235103. [Google Scholar] [CrossRef] [PubMed]
- Penkov, N.V.; Yashin, V.A.; Belosludtsev, K.N. Hydration shells of DPPC liposomes from the point of view of terahertz time-domain spectroscopy. Appl. Spectrosc. 2021, 75, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Penkov, N.; Yashin, V.; Fesenko, E.; Manokhin, A.; Fesenko, E. A Study of the Effect of a Protein on the Structure of Water in Solution Using Terahertz Time-Domain Spectroscopy. Appl. Spectrosc. 2018, 72, 257–267. [Google Scholar] [CrossRef]
- Penkov, N.V.; Penkova, N.A.; Lobyshev, V.I. Special Role of Mg2+ in the Formation of the Hydration Shell of Adenosine Triphosphate. Phys. Wave Phenom. 2022, 30, 344–350. [Google Scholar] [CrossRef]
- Penkova, N.A.; Sharapov, M.G.; Penkov, N.V. Hydration shells of DNA from the point of view of terahertz time-domain spectroscopy. Int. J. Mol. Sci. 2021, 22, 11089. [Google Scholar] [CrossRef] [PubMed]
- Penkov, N.V. Relationships between molecular structure of carbohydrates and their dynamic hydration shells revealed by terahertz time-domain spectroscopy. Int. J. Mol. Sci. 2021, 22, 11969. [Google Scholar] [CrossRef]
- Chakraborty, S.; Pyne, P.; Mitra, R.K.; Mahanta, D.D. Hydrogen bond structure and associated dynamics in micro-heterogeneous and in phase separated alcohol-water binary mixtures: A THz spectroscopic investigation. J. Mol. Liq. 2023, 382, 121998. [Google Scholar] [CrossRef]
- Lee, Y.S. Principles of Terahertz Science and Technology, 1st ed.; Springer: New York, NY, USA, 2009; 340p. [Google Scholar] [CrossRef]
- Penkov, N.V.; Shvirst, N.E.; Yashin, V.A.; Fesenko, E.E. On singularities of molecular relaxation in water solutions. Biophysics 2013, 58, 731–738. [Google Scholar] [CrossRef]
- Penkov, N.V.; Penkova, N. Key differences of the hydrate shell structures of ATP and Mg·ATP revealed by terahertz time-domain spectroscopy and dynamic light scattering. J. Phys. Chem. B 2021, 125, 4375–4382. [Google Scholar] [CrossRef] [PubMed]
- Sihvola, A. Mixing Rules with Complex Dielectric Coefficients. Subsurf. Sens. Technol. Appl. 2000, 1, 393–415. [Google Scholar] [CrossRef]
- Bruggeman, D.A.G. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Hoiland, H.; Holvik, H. Partial molal volumes and compressibilities of carbohydrates in water. J. Solut. Chem. 1978, 7, 587–596. [Google Scholar] [CrossRef]
- Kaminski, K.; Kaminska, E.; Ngai, K.L.; Paluch, M.; Wlodarczyk, P.; Kasprzycka, A.; Szeja, W. Identifying the origins of two secondary relaxations in polysaccharides. J. Phys. Chem. B 2009, 113, 10088–10096. [Google Scholar] [CrossRef] [PubMed]
- Von Hippel, A.R. The dielectric relaxation spectra of water, ice and aqueous solutions, and their interpretation. II. Tentative interpretation of the relaxation spectrum of water in the time and frequency domain. IEEE Trans. Electr. Insul. 1988, 23, 817–823. [Google Scholar] [CrossRef]
- Laage, D.; Hynes, J.T. A molecular jump mechanism of water reorientation. Science 2006, 311, 832–835. [Google Scholar] [CrossRef]
- Barthel, J.; Bachhuber, K.; Buchner, R.; Hetzenauer, H. Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols. Chem. Phys. Lett. 1990, 165, 369–373. [Google Scholar] [CrossRef]
- Yada, H.; Nagai, M.; Tanaka, K. Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 2008, 464, 166–170. [Google Scholar] [CrossRef]
- Penkov, N.; Shvirst, N.; Yashin, V.; Fesenko, E., Jr.; Fesenko, E. Terahertz spectroscopy applied for investigation of water structure. J. Phys. Chem. B 2015, 119, 12664–12670. [Google Scholar] [CrossRef]
- Shiraga, K.; Suzuki, T.; Kondo, N.; De Baerdemaeker, J.; Ogawa, Y. Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network. Carbohydr. Res. 2015, 406, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, O.F. Low-frequency spetroscopic studies of interactions in liquids. Annu. Rep. Sect. C Phys. Chem. 1993, 90, 3–44. [Google Scholar] [CrossRef]
- Nielsen, O.F. Low-frequency spectroscopic studies and intermolecular vibrational energy transfer in liquids. Annu. Rep. Sect. C Phys. Chem. 1996, 93, 57–99. [Google Scholar] [CrossRef]
- Shiraga, K.; Adachi, A.; Nakamura, M.; Tajima, T.; Ajito, K.; Ogawa, Y. Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study. J. Chem. Phys. 2017, 146, 105102. [Google Scholar] [CrossRef] [PubMed]
- Cherkasova, O.P.; Nazarov, M.M.; Konnikova, M.; Shkurinov, A.P. THz spectroscopy of bound water in glucose: Direct measurements from crystalline to dissolved state. J. Infrared Millim. Terahertz Waves 2020, 41, 1057–1068. [Google Scholar] [CrossRef]
- Nazarov, M.M.; Cherkasova, O.P.; Shkurinov, A.P. Study of the dielectric function of aqueous solutions of glucose and albumin by THz time-domain spectroscopy. Quantum Electron. 2016, 46, 488–495. [Google Scholar] [CrossRef]
- Ellison, W.J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range—25THz and the temperature range—100 °C. J. Phys. Chem. Ref. Data 2007, 36, 1–18. [Google Scholar] [CrossRef]
- Barthel, J.; Buchner, R.; Eberspächer, P.-N.; Münsterer, M.; Stauber, J.; Wurm, B. Dielectric relaxation spectroscopy of electrolyte solutions. Recent developments and prospects. J. Mol. Liq. 1998, 78, 83–109. [Google Scholar] [CrossRef]
- Fuchs, K.; Kaatze, U. Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration. J. Phys. Chem. B 2001, 105, 2036–2042. [Google Scholar] [CrossRef]
- Perticaroli, S.; Nakanishi, M.; Pashkovski, E.; Sokolov, A.P. Dynamics of hydration water in sugars and peptides solutions. J. Phys. Chem. B 2013, 117, 7729–7736. [Google Scholar] [CrossRef]
- Penkov, N.V. Calculation of the Proportion of Free Water Molecules in Aqueous Solutions Using the Parameters of Their Dielectric Permittivity in the Terahertz Range, Based on the Onsager Theory. Photonics 2023, 10, 44. [Google Scholar] [CrossRef]
- Sidebottom, D.L.; Tran, T.D. Universal patterns of equilibrium cluster growth in aqueous sugars observed by dynamic light scattering. Phys. Rev. E. 2010, 82, 051904. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, T.; Nagai, M.; Tanaka, K. Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 2008, 457, 12–17. [Google Scholar] [CrossRef]
- Wach, W. Fructose. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Offstein, Germany; Sudzucker AG: Mannheim, Germany; Ochsenfurt, Germany, 2004; Volume 16, pp. 103–117. [Google Scholar] [CrossRef]
- Kerins, L.; Byrne, S.; Gabba, A.; Murphy, P.V. Anomer preferences for glucuronic and galacturonic acid and derivatives and influence of electron-withdrawing substituents. J. Org. Chem. 2018, 83, 7714–7729. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, S. Hydrogen Bonding: A Theoretical Perspective; Oxford University Press: New York, NY, USA, 1997; 375p, ISBN 019509011X. [Google Scholar]
- Heyden, M.; Bründermann, E.; Heugen, U.; Niehues, G.; Leitner, D.M.; Havenith, M. Long-range influence of carbohydrates on the solvation dynamics of water—Answers from terahertz absorption measurements and molecular modeling simulations. J. Am. Chem. Soc. 2008, 130, 5773–5779. [Google Scholar] [CrossRef]
- Ebbinghaus, S.; Kim, S.J.; Heyden, M.; Yu, X.; Heugen, U.; Gruebele, M.; Leitner, D.M.; Havenith, M. An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA 2007, 104, 20749–20752. [Google Scholar] [CrossRef]
- Born, B.; Kim, S.J.; Ebbinghaus, S.; Gruebele, M.; Havenith, M. The terahertz dance of water with the proteins: The effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss. 2009, 141, 161–173. [Google Scholar] [CrossRef]
Sugar Solution | Δε1 | Δε2 | τ2, ps | , cm−1 | γ, cm−1 | n, % | |
---|---|---|---|---|---|---|---|
Glucose with MHs | 61.1 ± 1.1 | 2.95 ± 0.05 | 0.339 ± 0.006 | 222 ± 9 | 216 ± 18 | 1.80 ± 0.02 | 4.97 ± 0.09 |
Glucose molecular | 63.6 ± 1.1 | 2.94 ± 0.05 | 0.341 ± 0.004 | 219 ± 9 | 211 ± 20 | 1.82 ± 0.04 | 4.92 ± 0.06 |
Fructose with MHs | 61.7 ± 0.8 | 2.99 ± 0.03 | 0.338 ± 0.004 | 210 ± 6 | 193 ± 13 | 1.80 ± 0.03 | 5.01 ± 0.06 |
Fructose molecular | 64.9 ± 0.9 | 2.94 ± 0.03 | 0.336 ± 0.004 | 214 ± 6 | 199 ± 13 | 1.86 ± 0.02 | 4.87 ± 0.05 |
Sucrose with MHs | 60.1 ± 1.0 | 3.03 ± 0.06 | 0.341 ± 0.008 | 213 ± 9 | 202 ± 17 | 1.82 ± 0.03 | 5.04 ± 0.09 |
Sucrose molecular | 61.9 ± 0.7 | 2.97 ± 0.04 | 0.341 ± 0.004 | 216 ± 9 | 210 ± 20 | 1.82 ± 0.04 | 4.95 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penkov, N.V. Application of Terahertz Time-Domain Spectroscopy to Study the Microheterogeneities of Solutions: A Case Study of Aqueous Sugar Solutions. Photonics 2023, 10, 887. https://doi.org/10.3390/photonics10080887
Penkov NV. Application of Terahertz Time-Domain Spectroscopy to Study the Microheterogeneities of Solutions: A Case Study of Aqueous Sugar Solutions. Photonics. 2023; 10(8):887. https://doi.org/10.3390/photonics10080887
Chicago/Turabian StylePenkov, Nikita V. 2023. "Application of Terahertz Time-Domain Spectroscopy to Study the Microheterogeneities of Solutions: A Case Study of Aqueous Sugar Solutions" Photonics 10, no. 8: 887. https://doi.org/10.3390/photonics10080887
APA StylePenkov, N. V. (2023). Application of Terahertz Time-Domain Spectroscopy to Study the Microheterogeneities of Solutions: A Case Study of Aqueous Sugar Solutions. Photonics, 10(8), 887. https://doi.org/10.3390/photonics10080887