Theoretical and Experimental Study of Optical Losses in a Periodic/Quasiperiodic Structure Based on Porous Si-SiO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. PQS Complex Refractive Index
2.2. Porous Silicon Periodic/Quasiperiodic Structures Fabrication
2.3. Porous Si-SiO2 PQS Fabrication
2.4. PQS Optical Characterization
2.5. Porous SiO2 PQS SEM and EDS Characterization
2.6. Optical Losses
2.6.1. Absorption Losses
2.6.2. Scattering Losses
3. Results and Discussion
3.1. PQS Complex Refractive Index
3.2. PQS Optical Characterization
Porous Si-SiO2 PQS Transmission and Reflection Spectra
3.3. Porous Si-SiO2 PQS SEM and EDS Characterization
3.4. PQS Optical Losses
3.4.1. PQS Absorption Losses
3.4.2. PQS Scattering Losses
4. Conclusions
- The study focused on a specific oxidation process. Other oxidation methods and conditions may yield different results in terms of optical losses;
- The fabrication process of periodic/quasiperiodic structures can be complex and time-consuming, making large-scale production challenging;
- The study did not investigate the long-term stability and reliability of the porous Si-SiO2 structures. Further studies are needed to assess the material’s durability and performance over extended periods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, N.B.; Alshammari, S.; Trabelsi, Y.; Alsaif, H.; Kahouli, O.; Elleuch, Z. Tunable multi-band-stop filters using generalized fibonacci photonic crystals for optical communication applications. Mathematics 2022, 10, 1240. [Google Scholar] [CrossRef]
- Singh, B.K.; Rajput, P.S.; Dikshit, A.K.; Pandey, P.C.; Bambole, V. Consequence of Fibonacci quasiperiodic sequences in 1-D photonic crystal refractive index sensor for the blood plasma and cancer cells detections. Opt. Quantum Electron. 2022, 54, 766. [Google Scholar]
- Baran, N.; Gebavi, H.; Mikac, L.; Ristić, D.; Gotić, M.; Syed, K.A.; Ivanda, M. Sensing properties of oxidized nanostructured silicon surface on vaporized molecules. Sensors 2019, 19, 119. [Google Scholar] [CrossRef]
- Molinero, D.; Valera, E.; Lazaro, A.; Girbau, D.; Rodriguez, A.; Pradell, L.; Alcubilla, R. Properties of oxidized porous silicon as insulator material for RF applications. In Proceedings of the Conference on Electron Devices, 2005 Spanish, Tarragona, Spain, 2–4 February 2005; pp. 131–133. [Google Scholar]
- Zheng, Y.; Dai, H.; Wu, J.; Zhou, C.; Wang, Z.; Zhou, R.; Li, W. Research progress and development trend of smart metamaterials. Front. Phys. 2022, 10, 1069722. [Google Scholar] [CrossRef]
- Poonam, J.; Mohamad, A.H.; Deepam, G.; Anurag, C. A review of different techniques used to design photonic crystal-based logic gates. Optik 2023, 280, 170794. [Google Scholar]
- Bellingeri, M.; Chiasera, A.; Kriegel, I.; Scotognella, F. Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures. Opt. Mater. 2017, 72, 403–421. [Google Scholar]
- Dal Negro, L.; Boriskina, S.V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev. 2012, 6, 178–218. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, J.S.; Kim, D.A. Mini review: Recent advances in surface modification of porous silicon. Materials 2018, 11, 2557. [Google Scholar] [CrossRef]
- Pirasteh, P.; Charrier, J.; Soltani, A.; Haesaert, S.; Haji, L.; Godon, C.; Errien, N. The effect of oxidation on physical properties of porous silicon layers for optical applications. Appl. Surf. Sci. 2006, 253, 1999–2002. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Xu, S.; Wang, L.; Cao, Z.; Zhan, P.; Wang, Z. 1D partially oxidized porous silicon photonic crystal reflector for mid-infrared application. J. Phys. D Appl. Phys. 2007, 40, 4482. [Google Scholar] [CrossRef]
- Thøgersen, A.; Selj, J.H.; Marstein, E.S. Oxidation effects on graded porous silicon anti-reflection coatings. J. Electrochem. Soc. 2012, 159, D276. [Google Scholar] [CrossRef]
- Morales, F.; García, G.; Luna, A.; López, R.; Rosendo, E.; Diaz, T.; Juárez, H. UV distributed Bragg reflectors build from porous silicon multilayers. J. Eur. Opt. Soc. 2015, 10, 15016. [Google Scholar]
- Ghulinyan, M.; Gelloz, B.; Ohta, T.; Pavesi, L.; Lockwood, D.; Koshida, N. Stabilized porous silicon optical superlattices with controlled surface passivation. Appl. Phys. Lett. 2008, 93, 061113. [Google Scholar] [CrossRef]
- Jimenéz-Vivanco, M.R.; García, G.; Carrillo, J.; Agarwal, V.; Díaz-Becerril, T.; Doti, R.; Faubert, J.; Lugo, J.E. Porous Si-SiO2 based UV Microcavities. Sci. Rep. 2020, 10, 2220. [Google Scholar] [PubMed]
- Pirasteh, P.; Charrier, J.; Dumeige, Y.; Joubert, P.; Haesaert, S.; Chaillou, A.; Haji, L.; Le Rendu, P.; Nguyen, T.P. Light propagation and scattering in porous silicon nanocomposite waveguides. Phys. Status Solidi 2005, 202, 1712–1716. [Google Scholar] [CrossRef]
- Dovzhenko, D.; Chistyakov, A.; Nabiev, I. Modeling and optimization of the porous silicon photonic structures. 2nd International Symposium on Physics, Engineering and Technologies for Biomedicine. KnE Energy 2018, 3, 75–81. [Google Scholar] [CrossRef]
- Pirasteh, P.; Charrier, J.; Dumeige, Y.; Haesaert, S.; Joubert, P. Optical loss study of porous silicon and oxidized porous silicon planar waveguides. J. Appl. Phys. 2007, 101, 083110. [Google Scholar] [CrossRef]
- De La Mora, M.; Del Río, J.; Nava, R.; Tagüeña-Martínez, J.; Reyes-Esqueda, J.; Kavokin, A.; Faubert, J.; Lugo, J.E. Anomalous patterned scattering spectra of one-dimensional porous silicon photonic crystals. Opt. Express 2010, 18, 22808–22816. [Google Scholar] [CrossRef]
- Lujan-Cabrera, I.; Ramirez-Gutierrez, C.; Castaño-Yepes, J.; Rodriguez-Garcia, M. Effects of the interface roughness in the optical response of one-dimensional photonic crystals of porous silicon. Phys. B Condens. Matter 2019, 560, 133–139. [Google Scholar]
- Kippenberg, T.; Tchebotareva, A.; Kalkman, J.; Polman, A.; Vahala, K. Purcell factor reduced scattering losses in optical microcavities. In Proceedings of the 2005 European Quantum Electronics Conference, Munich, Germany, 12–17 June 2005; IEEE Computer Society: Washington, DC, USA, 2005; p. 358. [Google Scholar]
- Tezuka, T.; Nunoue, S. Diameter-dependent optical losses in pillar microcavities. J. Appl. Phys. 1996, 79, 2875–2878. [Google Scholar] [CrossRef]
- Lerondel, G.; Romestain, R. Quantitative analysis of the light scattering effect on porous silicon optical measurements. Thin Solid Film. 1997, 297, 114–117. [Google Scholar] [CrossRef]
- Cassio, F.; Poffo, L.; Lorrain, N.; Pirasteh, P.; Lemaitre, J.; Guendouz, M. Polarization-dependent losses in porous silicon ridge waveguides. Results Opt. 2022, 9, 100269. [Google Scholar]
- Sierra-Moreno, R.; Lujan-Cabrera, I.; Cabrera-Teran, J.; Ortiz-Vazquez, E.; Rodriguez-Garcia, M.; Ramirez-Gutierrez, C. Study of the optical response of oxidized porous silicon structures by thermal oxidation in air. J. Mater. Sci. 2022, 57, 11226–11241. [Google Scholar]
- Charrier, J.; Kloul, M.; Pirasteh, P.; Bardeau, J.-F.; Guendouz, M.; Bulou, A.; Haji, L. Structural and optical studies of porous silicon buried waveguides: Effects of oxidation and pore filling using DR1 dyes. Opt. Mater. 2007, 30, 431–437. [Google Scholar] [CrossRef]
- Pavlikov, A.V.; Lartsev, A.V.; Gayduchenko, I.A.; Timoshenko, V.Y. Optical properties of materials based on oxidized porous silicon and their applications for UV protection. Microelectron. Eng. 2012, 90, 96–98. [Google Scholar] [CrossRef]
- Lérondel, G.; Reece, P.; Bruyant, A.; Gal, M. Strong light confinement in microporous photonic silicon structures. In MRS Online Proceedings Library (OPL); Cambridge University Press: Cambridge, UK, 2003; Volume 797. [Google Scholar]
- Setzu, S.; Lérondel, G.; Romestain, R. Temperature effect on the roughness of the formation interface of p-type porous silicon. J. Appl. Phys. 1998, 84, 3129–3133. [Google Scholar] [CrossRef]
- Charrier, J.; Alaiwan, V.; Pirasteh, P.; Najar, A.; Gadonna, M. Influence of experimental parameters on physical properties of porous silicon and oxidized porous silicon layers. Appl. Surf. Sci. 2007, 253, 8632–8636. [Google Scholar] [CrossRef]
- Wolf, A.; Terheiden, B.; Brendel, R. Light scattering and diffuse light propagation in sintered porous silicon. J. Appl. Phys. 2008, 104, 033106. [Google Scholar]
- Sarafis, P.; Nassiopoulou, A.G. Dielectric properties of porous silicon for use as a substrate for the on-chip integration of millimeter-wave devices in the frequency range 140 to 210 GHz. Nanoscale Res. Lett. 2014, 9, 1–8. [Google Scholar] [CrossRef]
- Lugo, J.E.; Lopez, H.; Chan, S.; Fauchet, P. Porous silicon multilayer structures: A photonic band gap analysis. J. Appl. Phys. 2002, 91, 4966–4972. [Google Scholar] [CrossRef]
- Toledo Solano, M.; Rubo, Y.G.; Del Río, J.; Arenas, M. Rayleigh scattering in multilayered structures of porous silicon. Phys. Status Solidi 2005, 2, 3544–3547. [Google Scholar] [CrossRef]
- Rubo, Y.G.; Toledo Solano, M.; Del Río, J. Photon losses in porous silicon microcavities. Phys. Status Solidi (A) 2005, 202, 2626–2632. [Google Scholar] [CrossRef]
- Palavicini, A.; Wang, C. Infrared transmission in porous silicon multilayers. Opt. Photonics J. 2013, 3, 20–25. [Google Scholar]
- Pérez, K.S.; Estevez, J.O.; Méndez-Blas, A.; Arriaga, J.; Palestino, G.; Mora-Ramos, M.E. Tunable resonance transmission modes in hybrid heterostructures based on porous silicon. Nanoscale Res. Lett. 2012, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ghulinyan, M.; Oton, C.; Bonetti, G.; Gaburro, Z.; Pavesi, L. Free-standing porous silicon single and multiple optical cavities. J. Appl. Phys. 2003, 93, 9724–9729. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Sohn, H. Refractive index of porous silicon. In Handbook of Porous Silicon; Springer: New York, NY, USA, 2014; pp. 1–12. [Google Scholar]
- Laskowski, Ł.; Laskowska, M.; Vila, N.; Schabikowski, M.; Walcarius, A. Mesoporous silica-based materials for electronics-oriented applications. Molecules 2019, 24, 2395. [Google Scholar] [PubMed]
- Matsui, I. Nanoparticles for electronic device applications: A brief review. J. Chem. Eng. Jpn. 2005, 38, 535–546. [Google Scholar] [CrossRef]
- Almeshaal, M.A.; Abdouli, B.; Choubani, K.; Khezami, L.; Rabha, M.B. Study of Porous Silicon Layer Effect in Optoelectronics Properties of Multi-Crystalline Silicon for Photovoltaic Applications. Silicon 2023, 1–8. [Google Scholar] [CrossRef]
Complex Refractive Index of PS (@613 nm) | Complex Refractive Index of Porous Si-SiO2 (@494 nm) | (%), (%) before Oxidation | (%) after Oxidation | (%) after Oxidation | (%) after Oxidation |
---|---|---|---|---|---|
1.778-0.005i | 1.301-0.0039i | 75, 25 | 51.54 | 45.92 | 2.54 |
2.611-0.0142i | 1.432-0.0001i | 44, 56 | 6.36 | 93.59 | 0.05 |
Element | wt% | wt% Standard Deviation |
---|---|---|
O | 51.06 | 0.90 |
Si | 48.94 | 0.90 |
Total: | 100.00 |
Fibonacci | p | 1 − p | ||||||
---|---|---|---|---|---|---|---|---|
Mode 1 (587 nm) | 0.6 | 0.4 | 2.5 × 10−9 | 1.17 × 10−7 | 3.41 × 10−22 | 4.65 | 3.21 × 1015 | 3.88 × 105 |
Mode 2 (639 nm) | 0.6 | 0.4 | 2.5 × 10−9 | 1.31 × 10−7 | 3.81 × 10−22 | 4.65 | 2.95 × 1015 | 3.28 × 105 |
Fibonacci | p | 1 − p | ||||||
---|---|---|---|---|---|---|---|---|
Mode 1 (470 nm) | 0.29 | 0.71 | 3.12 × 10−9 | 1.53 × 10−7 | 4.1 × 10−23 | 1.85 | 4.01 × 1015 | 1.51 × 105 |
Mode 2 (518 nm) | 0.29 | 0.71 | 3.12 × 10−9 | 2.18 × 10−7 | 5.89 × 10−23 | 1.85 | 3.64 × 1015 | 1.25 × 105 |
Fibonacci | Lifetime of Photons in PS | Lifetime of Photons in Porous Si-SiO2 | Photon Losses in PS (cm−1) | Photon Losses in Porous Si-SiO2 (cm−1) |
---|---|---|---|---|
Mode 1 | 0.0303 | 0.065 | 1100 | 513 |
Mode 2 | 0.038 | 0.067 | 877 | 498 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Vivanco, M.R.; Herrera, R.; Martínez, L.; Morales, F.; Misaghian, K.; Toledo-Solano, M.; Lugo, J.E. Theoretical and Experimental Study of Optical Losses in a Periodic/Quasiperiodic Structure Based on Porous Si-SiO2. Photonics 2023, 10, 1009. https://doi.org/10.3390/photonics10091009
Jiménez-Vivanco MR, Herrera R, Martínez L, Morales F, Misaghian K, Toledo-Solano M, Lugo JE. Theoretical and Experimental Study of Optical Losses in a Periodic/Quasiperiodic Structure Based on Porous Si-SiO2. Photonics. 2023; 10(9):1009. https://doi.org/10.3390/photonics10091009
Chicago/Turabian StyleJiménez-Vivanco, María R., Raúl Herrera, Lizeth Martínez, Francisco Morales, Khashayar Misaghian, Miller Toledo-Solano, and J. Eduardo Lugo. 2023. "Theoretical and Experimental Study of Optical Losses in a Periodic/Quasiperiodic Structure Based on Porous Si-SiO2" Photonics 10, no. 9: 1009. https://doi.org/10.3390/photonics10091009
APA StyleJiménez-Vivanco, M. R., Herrera, R., Martínez, L., Morales, F., Misaghian, K., Toledo-Solano, M., & Lugo, J. E. (2023). Theoretical and Experimental Study of Optical Losses in a Periodic/Quasiperiodic Structure Based on Porous Si-SiO2. Photonics, 10(9), 1009. https://doi.org/10.3390/photonics10091009