Design for Ultrafast Raster Photography with a Large Amount of Spatio-Temporal Information
Abstract
:1. Introduction
2. The Amount of Information in High-Speed Photographic Systems
3. Analysis and Discussion
3.1. Characterization of the Spatial Resolution and Frame Number
3.2. Frame Rate and Spatial Resolution
3.3. Optimal Temporal Resolution and the Spatial Resolution Equation for a URI System
3.4. The Maximum Amount of Information of a URI System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Betti, R.; Hurricane, O.A. Inertial-confinement fusion with lasers. Nat. Phys. 2016, 12, 435–448. [Google Scholar] [CrossRef]
- Zewail, A.H. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond. J. Phys. Chem. A 2000, 104, 5660–5694. [Google Scholar] [CrossRef]
- Corkum, P.B.; Krausz, F. Attosecond Science. Nat. Phys. 2007, 3, 381. [Google Scholar] [CrossRef]
- Hassan, M.T.; Luu, T.T.; Moulet, A.; Raskazovskaya, O.; Zhokhov, P.; Garg, M.; Karpowicz, N.; Zheltikov, A.M.; Pervak, V.; Krausz, F.; et al. Optical Attosecond Pulses and Tracking the Nonlinear Response of Bound Electrons. Nature 2016, 530, 66–70. [Google Scholar] [CrossRef]
- Bowlan, P.; Fuchs, U.; Trebino, R.; Zeitner, U.D. Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution. Opt. Express 2008, 16, 13663–13675. [Google Scholar] [CrossRef] [PubMed]
- Fuller, P.W.W. An introduction to high-speed photography and photonics. Imaging Sci. J. 2009, 57, 293–302. [Google Scholar] [CrossRef]
- Liang, J.; Wang, L.V. Single-shot ultrafast optical imaging. Optica 2018, 5, 1113–1127. [Google Scholar] [CrossRef]
- Purwar, H.; Wang, H.; Tang, M.; Idlahcen, S.; Rozé, C.; Blaisot, J.B.; Godin, T.; Hideur, A. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser. Opt. Express 2015, 23, 33396–33407. [Google Scholar] [CrossRef]
- Thomann, I.; Bahabad, A.; Liu, X.; Trebino, R.; Murnane, M.; Kapteyn, H. Characterizing Isolated Attosecond Pulses from Hollow-Core Waveguides Using Multi-Cycle Driving Pulses. Opt. Express 2009, 17, 4611–4633. [Google Scholar] [CrossRef]
- López-Martens, R.; Mauritsson, J.; Johnsson, P.; Varjú, K.; L’Huillier, A.; Kornelis, W.; Biegert, J.; Keller, U.; Gaarde, M.; Schafer, K. Characterization of high-order harmonic radiation on femtosecond and attosecond timescales. Appl. Phys. B 2004, 78, 835–838. [Google Scholar] [CrossRef]
- Petrov, N.V.; Putilin, S.E.; Chipegin, A.A. Time-resolved image plane off-axis digital holography. Appl. Phys. Lett. 2017, 110, 161101. [Google Scholar] [CrossRef]
- Petrov, N.V.; Nalegaev, S.S.; Belashov, A.V.; Shevkunov, I.A.; Putilin, S.E.; Lin, Y.C.; Cheng, C.J. Time-resolved inline digital holography for the study of noncollinear degenerate phase modulation. Opt. Lett. 2018, 43, 3481–3484. [Google Scholar] [CrossRef] [PubMed]
- Belashov, A.V.; Shevkunov, I.A.; Kolesova, E.P.; Orlova, A.O.; Putilin, S.E.; Veniaminov, A.V.; Cheng, C.-J.; Petrov, N.V. Investigation of nonlinear optical properties of quantum dots deposited onto a sample glass using time-resolved inline digital holography. J. Imaging 2022, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liang, J.; Li, C.; Wang, L.V. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 2014, 516, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhu, L.; Wang, L.V. Single-shot real-time femtosecond imaging of temporal focusing. Light Sci. Appl. 2018, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Zhang, S.; Yang, C.; He, Y.; Cao, F.; Yao, J.; Ding, P.; Gao, L.; Jia, T.; Liang, J.; et al. Single-shot compressed ultrafast photography: A review. Adv. Photon. 2020, 2, 014003. [Google Scholar] [CrossRef]
- Yang, C.; Cao, F.; Qi, D.; He, Y.; Ding, P.; Yao, J.; Jia, T.; Sun, Z.; Zhang, S. Hyperspectrally compressed ultrafast photography. Phys. Rev. Lett. 2020, 124, 023902. [Google Scholar] [CrossRef]
- Tang, H.; Men, T.; Liu, X.; Hu, Y.; Su, J.; Zuo, Y.; Liang, J.; Downer, M.C.; Li, Z. Single shot compressed optical field topography. Light Sci. Appl. 2022, 11, 244. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.V. Single-Shot Reconfigurable Femtosecond Imaging of Ultrafast Optical Dynamics. Adv. Sci. 2023, 10, e2207222. [Google Scholar] [CrossRef]
- Yao, J.; Qi, D.; Liang, H.; He, Y.; Yao, Y.; Jia, T.; Yang, Y.; Sun, Z.; Zhang, S. Exploring femtosecond laser ablation by snapshot ultrafast imaging and molecular dynamics simulation. Ultrafast Sci. 2022, 2022, 9754131. [Google Scholar] [CrossRef]
- Zeng, X.; Lu, X.; Wang, C.; Wu, K.; Cai, Y.; Zhong, H.; Lin, Q.; Lin, J.; Ye, R.; Xu, S. Review and prospect of single-shot ultrafast optical imaging by active detection. Ultrafast Sci. 2023, 3, 0020. [Google Scholar] [CrossRef]
- Lin, Y.C.; Cheng, C.J.; Lin, L.C. Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events. Opt. Lett. 2017, 42, 2082–2085. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Guo, C.S. Simple system for realizing single-shot ultrafast sequential imaging based on spatial multiplexing in-line holography. Opt. Express 2022, 30, 41613–41623. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.H.; Li, J.F.; Peng, Q.X.; Liu, S.X.; Liu, J. All-optical coaxial framing photography using parallel coherence shutters. Opt. Lett. 2017, 42, 415–418. [Google Scholar]
- Sawashima, Y.; Yamanaka, D.; Takamoto, I.; Matsunaka, A.; Awatsuji, Y.; Nishio, K. Extending recordable time of light-in-flight recording by holography with double reference light pulses. Opt. Lett. 2018, 43, 5146–5149. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zheng, S.; Cai, Y.; Lin, Q.; Liang, J.; Lu, X.; Li, J.; Xie, W.; Xu, S. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification. Adv. Photon. 2020, 2, 53–63. [Google Scholar] [CrossRef]
- Inoue, T.; Kakue, T.; Nishio, K.; Kubota, T.; Awatsuji, Y. Multiple motion picture recording in light-in-flight recording by holography with an angular multiplexing technique. J. Opt. Soc. Am. A 2023, 40, 370–377. [Google Scholar] [CrossRef]
- Sheinman, M.; Erramilli, S.; Ziegler, L.; Hong, M.K.; Mertz, J. Flatfield ultrafast imaging with single-shot non-synchronous array photography. Opt. Lett. 2022, 47, 577–580. [Google Scholar] [CrossRef]
- Touil, M.; Idlahcen, S.; Becheker, R.; Lebrun, D.; Rozé, C.; Hideur, A.; Godin, T. Acousto-optically driven lensless single-shot ultrafast optical imaging. Light Sci. Appl. 2022, 11, 66. [Google Scholar] [CrossRef]
- Nakagawa, K.; Iwasaki, A.; Oishi, Y.; Horisaki, R.; Tsukamoto, A.; Nakamura, A.; Hirosawa, K.; Liao, H.; Ushida, T.; Goda, K.; et al. Sequentially timed all-optical mapping photography (STAMP). Nat. Photon. 2014, 8, 695–700. [Google Scholar] [CrossRef]
- Yuan, X.; Li, Z.; Zhou, J.; Liu, S.; Wang, D.; Lei, C. Hybrid-plane spectrum slicing for sequentially timed all-optical mapping photography. Opt. Lett. 2022, 47, 4822–4825. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wong, T.W.; Chen, F.; Wang, L. Compressed ultrafast spectral-temporal photography. Phys. Rev. Lett. 2019, 122, 193904. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Jin, C.; Wu, X.; Deng, L.; Jia, T.; Huang, F.; Liang, J.; Sun, Z.; Zhang, S. Single-shot real-time ultrafast imaging of femtosecond laser fabrication. ACS Photonics 2021, 8, 738–744. [Google Scholar]
- Yi, Y.; Zhu, P.; Ding, F.; Zhang, D.; Liang, X.; Sun, M.; Yang, Q.; Guo, A.; Kang, H.; Yao, X.; et al. Single-shot spatiotemporal plasma density diagnosis using an arbitrary time-wavelength-encoded biprism interferometer. Opt. Lasers Eng. 2023, 168, 107647. [Google Scholar] [CrossRef]
- Xu, Y.; Yi, Y.; Zhu, P.; Pan, X.; Zhang, Q.; Pan, L.; Ding, F.; Zhang, D.; Liang, X.; Sun, M.; et al. Simple single-shot complete spatiotemporal intensity and phase measurement of an arbitrary ultrashort pulse using coherent modulation imaging. Opt. Lett. 2022, 47, 5664–5667. [Google Scholar] [CrossRef]
- Guang, Z.; Rhodes, M.; Trebino, R. Measuring spatiotemporal ultrafast field structures of pulses from multimode optical fibers. Appl. Opt. 2017, 56, 3319–3324. [Google Scholar] [CrossRef]
- Guang, Z.; Rhodes, M.; Trebino, R. Measurement of the ultrafast lighthouse effect using a complete spatiotemporal pulse-characterization technique. J. Opt. Soc. Am. B 2016, 33, 1955–1962. [Google Scholar] [CrossRef]
- Guang, Z.; Rhodes, M.; Davis, M.; Trebino, R. Complete characterization of a spatiotemporally complex pulse by an improved single-frame pulse-measurement technique. J. Opt. Soc. Am. B 2014, 31, 2736–2743. [Google Scholar] [CrossRef]
- Ehn, A.; Bood, J.; Li, Z.; Berrocal, E.; Alden, M.; Kristensson, E. FRAME: Femtosecond videography for atomic and molecular dynamics. Light Sci. Appl. 2017, 6, e17045. [Google Scholar] [CrossRef]
- Moon, J.; Yoon, S.; Lim, Y.-S.; Choi, W. Single-shot imaging of microscopic dynamic scenes at 5 THz frame rates by time and spatial frequency multiplexing. Opt. Express 2020, 28, 4463–4474. [Google Scholar] [CrossRef]
- Huang, H.Y.; Cheng, Z.J.; Yang, Y.; Yue, Q.Y.; Guo, C.S. Single-shot ultrafast sequential holographic imaging with high temporal resolution and a large field of view. Opt. Lett. 2019, 44, 4885–4888. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; He, K.; Tian, J.; Zhang, C.; Zhang, J.; Wang, T.; Chen, S.; Jia, H.; Yuan, F.; Liang, L.; et al. Ultrafast all-optical solid-state framing camera with picosecond temporal resolution. Opt. Express 2017, 25, 8721–8729. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zeng, X.; Cai, Y.; Lu, X.; Zhu, Q.; Zeng, L.; He, T.; Li, J.; Yang, Y.; Zheng, M.; et al. All-optical high spatial-temporal resolution photography with raster principle at 2 trillion frames per second. Opt. Express 2021, 29, 27298–27308. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tan, X.; Gong, X.; Ai, Y. Studies on degree of freedom for high-speed photography. In Proceedings of the 26th International Congress on High-Speed Photography and Photonics, Alexandria, VA, USA, 20–24 September 2004; Volume 5580, pp. 805–810. [Google Scholar]
- Schardin, H. Uber die Grenzen der Hochfrequenz Kinematographik. In Proceedings of the 6th International Congress on High-Speed Photography (ICHSP), Rio de Janeiro, Brazil, 14–17 August 1963. [Google Scholar]
- Sun, F.G.; Jiang, Z. Analysis of terahertz pulse measurement with a chirped probe beam. Appl. Phys. Lett. 1998, 73, 2233–2235. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zeng, X.; Ling, W.; Zeng, L.; Zhao, Y.; Yang, J.; Li, J. Design for Ultrafast Raster Photography with a Large Amount of Spatio-Temporal Information. Photonics 2024, 11, 24. https://doi.org/10.3390/photonics11010024
Zhu Y, Zeng X, Ling W, Zeng L, Zhao Y, Yang J, Li J. Design for Ultrafast Raster Photography with a Large Amount of Spatio-Temporal Information. Photonics. 2024; 11(1):24. https://doi.org/10.3390/photonics11010024
Chicago/Turabian StyleZhu, Yongle, Xuanke Zeng, Weijun Ling, Liangwei Zeng, Yuxiang Zhao, Jinfang Yang, and Jingzhen Li. 2024. "Design for Ultrafast Raster Photography with a Large Amount of Spatio-Temporal Information" Photonics 11, no. 1: 24. https://doi.org/10.3390/photonics11010024
APA StyleZhu, Y., Zeng, X., Ling, W., Zeng, L., Zhao, Y., Yang, J., & Li, J. (2024). Design for Ultrafast Raster Photography with a Large Amount of Spatio-Temporal Information. Photonics, 11(1), 24. https://doi.org/10.3390/photonics11010024