Coarse Integral Volumetric Imaging Display with Time and Polarization Multiplexing
Abstract
:1. Introduction
2. Conventional Research
2.1. Coarse Integral Volumetric Imaging
2.2. Pancharatnam–Berry Phase Lens
3. Proposed Method and Results
3.1. CIVI System with Time and Polarization Multiplexing
3.2. Fabrication of PBL
3.3. Breadboard Demonstration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lippman, G. La Photographie Integrale. Comptes-Rendus 1908, 146, 446–451. [Google Scholar]
- Burckhardt, C.B. Optimum Parameters and Resolution Limitation of Integral Photography. JOSA 1968, 58, 71–76. [Google Scholar] [CrossRef]
- Okoshi, T. Three-Dimensional Displays. Proc. IEEE 1980, 68, 548–564. [Google Scholar] [CrossRef]
- Arimoto, H.; Javidi, B. Integral Three-Dimensional Imaging with Digital Reconstruction. Opt. Lett. 2001, 26, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-S.; Javidi, B. Large Depth-of-Focus Time-Multiplexed Three-Dimensional Integral Imaging by Use of Lenslets with Nonuniform Focal Lengths and Aperture Sizes. Opt. Lett. 2003, 28, 1924–1926. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wang, Q.-H.; Li, D.-H.; Wang, F.-N. P-1: An Integral Imaging Display With Wide Viewing Angle. SID Symp. Dig. Tech. Pap. 2011, 42, 1095–1097. [Google Scholar] [CrossRef]
- Lee, B.; Jung, S.; Min, S.-W.; Park, J.-H. Three-Dimensional Display by Use of Integral Photography with Dynamically Variable Image Planes. Opt. Lett. 2001, 26, 1481–1482. [Google Scholar] [CrossRef]
- Lee, B.; Jung, S.; Park, J.-H.; Min, S.-W. Viewing-Angle-Enhanced Integral Imaging Using Lens Switching. In Proceedings of the Stereoscopic Displays and Virtual Reality Systems IX (SPIE), San Jose, CA, USA, 23 May 2002; Volume 4660, pp. 146–154. [Google Scholar]
- Park, J.-H.; Jung, S.; Choi, H.; Lee, B. Integral Imaging with Multiple Image Planes Using a Uniaxial Crystal Plate. Opt. Express 2003, 11, 1862–1875. [Google Scholar] [CrossRef]
- Min, S.-W.; Javidi, B.; Lee, B. Enhanced Three-Dimensional Integral Imaging System by Use of Double Display Devices. Appl. Opt. 2003, 42, 4186–4195. [Google Scholar] [CrossRef]
- Min, S.-W.; Hahn, M.; Kim, J.; Lee, B. Three-Dimensional Electro-Floating Display System Using an Integral Imaging Method. Opt. Express 2005, 13, 4358–4369. [Google Scholar] [CrossRef]
- Kim, Y.; Park, J.-H.; Choi, H.; Kim, J.; Cho, S.-W.; Lee, B. Depth-Enhanced Three-Dimensional Integral Imaging by Use of Multilayered Display Devices. Appl. Opt. 2006, 45, 4334–4343. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Choi, H.; Kim, J.; Cho, S.-W.; Kim, Y.; Park, G.; Lee, B. Depth-Enhanced Integral Imaging Display System with Electrically Variable Image Planes Using Polymer-Dispersed Liquid-Crystal Layers. Appl. Opt. 2007, 46, 3766–3773. [Google Scholar] [CrossRef] [PubMed]
- Kakeya, H. Formulation of Coarse Integral Imaging and Its Applications. In Proceedings of the Stereoscopic Displays and Applications XIX (SPIE), San Jose, CA, USA, 29 February 2008; Volume 6803, pp. 412–421. [Google Scholar]
- Kakeya, H.; Sawada, S.; Ueda, Y.; Kurokawa, T. Integral Volumetric Imaging with Dual Layer Fly-Eye Lenses. Opt. Express 2012, 20, 1963–1968. [Google Scholar] [CrossRef] [PubMed]
- Kakeya, H.; Sawada, S. Reduction of Image Discontinuity in Coarse Integral Volumetric Imaging. Opt. Lett. 2015, 40, 5698–5701. [Google Scholar] [CrossRef] [PubMed]
- Borjigin, G.; Kakeya, H. Backlight System Using an Interleaved Fresnel Lens Array That Attains a Uniform Luminance and Two-Dimensional Directional Light Control. Opt. Lett. 2022, 47, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, Y.; Li, X.; Cheng, M.; Li, Z.; Deng, D.; Wang, S.; Liang, H.; Li, K.; Zhou, J. Harnessing and Cloaking Optical Boundary in Lens-Array Based Display. Opt. Lasers Eng. 2022, 156, 107085. [Google Scholar] [CrossRef]
- Kim, Y.; Park, G.; Jung, J.-H.; Kim, J.; Lee, B. Color Moiré Pattern Simulation and Analysis in Three-Dimensional Integral Imaging for Finding the Moiré-Reduced Tilted Angle of a Lens Array. Appl. Opt. 2009, 48, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Deng, H.; Zhong, F.-Y.; Chen, C.; Li, Q. Integral Imaging Display with Enhanced Depth of Field Based on Bifocal Lens Array. J. Soc. Inf. Disp. 2021, 29, 689–696. [Google Scholar] [CrossRef]
- Park, M.; Choi, H.-J. A Method to Enhance the Depth Range of an Integral Imaging System Using a Geometric Phase Lens. In Proceedings of the Digital Holography and Three-Dimensional Imaging 2018, Orlando, FL, USA, 25–28 June 2018. [Google Scholar]
- Shen, X.; Wang, Y.-J.; Chen, H.-S.; Xiao, X.; Lin, Y.-H.; Javidi, B. Extended Depth-of-Focus 3D Micro Integral Imaging Display Using a Bifocal Liquid Crystal Lens. Opt. Lett. 2015, 40, 538–541. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Ji, C.-C.; Li, L.; Deng, H. Dual-View Integral Imaging 3D Display by Using Orthogonal Polarizer Array and Polarization Switcher. Opt. Express 2016, 24, 9–16. [Google Scholar] [CrossRef]
- Kwon, K.-C.; Erdenebat, M.-U.; Lim, Y.-T.; Joo, K.-I.; Park, M.-K.; Park, H.; Jeong, J.-R.; Kim, H.-R.; Kim, N. Enhancement of the Depth-of-Field of Integral Imaging Microscope by Using Switchable Bifocal Liquid-Crystalline Polymer Micro Lens Array. Opt. Express 2017, 25, 30503–30512. [Google Scholar] [CrossRef] [PubMed]
- Suyama, S.; Takada, H.; Uehira, K.; Sakai, S.; Ohtsuka, S. 54.1: A Novel Direct-Vision 3-D Display Using Luminance-Modulated Two 2-D Images Displayed at Different Depths. SID Symp. Dig. Tech. Pap. 2000, 31, 1208–1211. [Google Scholar] [CrossRef]
- Suyama, S.; Takada, H.; Ohtsuka, S. A Direct-Vision 3-D Display Using a New Depth-Fusing Perceptual Phenomenon in 2-D Displays with Different Depths. IEICE Trans. Electron. 2002, E85-C, 1911–1915. [Google Scholar] [CrossRef] [PubMed]
- Suyama, S.; Ohtsuka, S.; Takada, H.; Uehira, K.; Sakai, S. Apparent 3-D Image Perceived from Luminance-Modulated Two 2-D Images Displayed at Different Depths. Vision Res. 2004, 44, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Pancharatnam, S. Generalized Theory of Interference, and Its Applications. Proc. Indian Acad. Sci. Sect. A 1956, 44, 247–262. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal Phase Factors Accompanying Adiabatic Changes. Proc. R. Soc. Lond. Math. Phys. Sci. 1997, 392, 45–57. [Google Scholar]
- Tan, G.; Zhan, T.; Lee, Y.-H.; Xiong, J.; Wu, S.-T. Polarization-Multiplexed Multiplane Display. Opt. Lett. 2018, 43, 5651–5654. [Google Scholar] [CrossRef]
- Zou, J.; Zhan, T.; Xiong, J.; Wu, S.-T. Broadband Wide-View Pancharatnam–Berry Phase Deflector. Opt. Express 2020, 28, 4921–4927. [Google Scholar] [CrossRef]
- Zhan, T.; Zou, J.; Xiong, J.; Liu, X.; Chen, H.; Yang, J.; Liu, S.; Dong, Y.; Wu, S.-T. Practical Chromatic Aberration Correction in Virtual Reality Displays Enabled by Cost-Effective Ultra-Broadband Liquid Crystal Polymer Lenses. Adv. Opt. Mater. 2020, 8, 1901360. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Y.; Semmen, J.; Rao, Y.; Wu, S.-T. Achromatic Diffractive Liquid-Crystal Optics for Virtual Reality Displays. Light Sci. Appl. 2023, 12, 230. [Google Scholar] [CrossRef]
- Zhan, T.; Lee, Y.-H.; Wu, S.-T. High-Resolution Additive Light Field near-Eye Display by Switchable Pancharatnam–Berry Phase Lenses. Opt. Express 2018, 26, 4863–4872. [Google Scholar] [CrossRef] [PubMed]
- Monnai, Y.; Hasegawa, K.; Fujiwara, M.; Yoshino, K.; Inoue, S.; Shinoda, H. HaptoMime: Mid-Air Haptic Interaction with a Floating Virtual Screen. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, 5 October 2014; pp. 663–667. [Google Scholar]
Camera Parameter | Green Line (TM Off) | Green Line (TM On) | White Line (TM Off) | White Line (TM On) |
---|---|---|---|---|
f/number | f/22 | f/22 | f/22 | f/22 |
ISO value | 20,000 | 20,000 | 10,000 | 10,000 |
Shutter speed | 1/5 | 1/5 | 1/5 | 1/5 |
Camera Parameter | White Image | Green Image |
---|---|---|
f/number | f/22 | f/22 |
ISO value | 2500 | 6400 |
Shutter speed | 1/10 | 1/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borjigin, G.; Ding, Y.; Semmen, J.; Safa, H.T.; Kakeya, H.; Wu, S.-T. Coarse Integral Volumetric Imaging Display with Time and Polarization Multiplexing. Photonics 2024, 11, 7. https://doi.org/10.3390/photonics11010007
Borjigin G, Ding Y, Semmen J, Safa HT, Kakeya H, Wu S-T. Coarse Integral Volumetric Imaging Display with Time and Polarization Multiplexing. Photonics. 2024; 11(1):7. https://doi.org/10.3390/photonics11010007
Chicago/Turabian StyleBorjigin, Garimagai, Yuqiang Ding, John Semmen, Hosna Tajvidi Safa, Hideki Kakeya, and Shin-Tson Wu. 2024. "Coarse Integral Volumetric Imaging Display with Time and Polarization Multiplexing" Photonics 11, no. 1: 7. https://doi.org/10.3390/photonics11010007
APA StyleBorjigin, G., Ding, Y., Semmen, J., Safa, H. T., Kakeya, H., & Wu, S. -T. (2024). Coarse Integral Volumetric Imaging Display with Time and Polarization Multiplexing. Photonics, 11(1), 7. https://doi.org/10.3390/photonics11010007