Characterization of kHz Repetition Rate Laser-Driven Electron Beams by an Inhomogeneous Field Dipole Magnet Spectrometer
Abstract
:1. Introduction
2. Design of the EBDS
2.1. EBDS Setup for ALFA Beamline
2.1.1. Design
2.1.2. Magnetic Field Geometry and Particle Tracking Models
2.1.3. Monte Carlo Radiation Matter Interaction Simulations
3. Results
3.1. Calibration of the EDBS
3.2. Electron Beam Characterization in the ALFA Beamline
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Citrin, D.E. Recent Developments in Radiotherapy. N. Engl. J. Med. 2017, 377, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Hogstrom, K.R.; Almond, P.R. Review of Electron Beam Therapy Physics. Phys. Med. Biol. 2006, 51, R455. [Google Scholar] [CrossRef]
- Zurrida, S.; Veronesi, U. Milestones in Breast Cancer Treatment. Breast J. 2015, 21, 3–12. [Google Scholar] [CrossRef]
- Chancellor, J.C.; Scott, G.B.I.; Sutton, J.P. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit. Life 2014, 4, 491–510. [Google Scholar] [CrossRef]
- Henniges, U.; Hasani, M.; Potthast, A.; Westman, G.; Rosenau, T. Electron Beam Irradiation of Cellulosic Materials—Opportunities and Limitations. Materials 2013, 6, 1584–1598. [Google Scholar] [CrossRef] [PubMed]
- Harrysson, O.L.A.; Cansizoglu, O.; Marcellin-Little, D.J.; Cormier, D.R.; West, H.A. Direct Metal Fabrication of Titanium Implants with Tailored Materials and Mechanical Properties Using Electron Beam Melting Technology. Mater. Sci. Eng. C 2008, 28, 366–373. [Google Scholar] [CrossRef]
- Michel, P. The Radiation Source ELBE at the Forschungszentrum Dresden-Rossendorf. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 3078–3080. [Google Scholar]
- Sampath, A.; Davoine, X.; Corde, S.; Gremillet, L.; Gilljohann, M.; Sangal, M.; Keitel, C.H.; Ariniello, R.; Cary, J.; Ekerfelt, H.; et al. Extremely Dense Gamma-Ray Pulses in Electron Beam-Multifoil Collisions. Phys. Rev. Lett. 2021, 126, 64801. [Google Scholar] [CrossRef]
- Li, W.; Hudson, M.K. Earth’s Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era. J. Geophys. Res. Space Phys. 2019, 124, 8319–8351. [Google Scholar] [CrossRef]
- Zymak, I.; Antipenkov, R.; Favetta, M.; Grittani, G.; Grenfell, A.; Lazzarini, C.M.; Goncalves, L.; Sobr, V.; Špaèek, A.; Szuba, W.; et al. Electron Beam Characterization and First Experimental Results for the Laser Wake Field Accelerator for Radiation to Electronics Effects Applications. In Proceedings of the 2022 22nd European Conference on Radiation and Its Effects on Components and Systems (RADECS), Venice, Italy, 3–7 October 2022. [Google Scholar]
- Zymak, I.; Antipenkov, R.; Gonçalves, L.; Grittani, G.; Lazzarini, C.M.; Lorenz, S.; Nevrkla, M.; Versaci, R.; Bakule, P.; Bulanov, S.V. Conceptual Design of a Novel Electron Radiation and Spacecraft Charging Test Platform for CubeSat Dimensioned Devices Based on Laser-Driven Electron Accelerator. In Proceedings of the 2021 21th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Vienna, Austria, 13–17 September 2021; pp. 1–4. [Google Scholar]
- Olifer, L.; Mann, I.R.; Claudepierre, S.G.; Baker, D.N.; Spence, H.E.; Ozeke, L.G. A Natural Limit to the Spectral Hardness of Worst Case Electron Radiation in the Terrestrial Van Allen Belt. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030506. [Google Scholar] [CrossRef]
- Martins, M.N.; Silva, T.F. Electron Accelerators: History, Applications, and Perspectives. Radiat. Phys. Chem. 2014, 95, 78–85. [Google Scholar] [CrossRef]
- Tavares, P.F.; Leemann, S.C.; Sjöström, M.; Andersson, Å. The MAXIV Storage Ring Project. J. Synchrotron Radiat. 2014, 21, 862–877. [Google Scholar] [CrossRef]
- Kovermann, J.W. Comparative Studies of High-Gradient Rf and Dc Breakdowns. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2010. [Google Scholar]
- Hubbard, R.F.; Sprangle, P.; Hafizi, B. Scaling of Accelerating Gradients and Dephasing Effects in Channel-Guided Laser Wakefield Accelerators. IEEE Trans. Plasma Sci. 2000, 28, 1122–1132. [Google Scholar] [CrossRef]
- Tajima, T.; Dawson, J.M. Laser Electron Accelerator. Phys. Rev. Lett. 1979, 43, 267–270. [Google Scholar] [CrossRef]
- Maier, A.R.; Delbos, N.M.; Eichner, T.; Hübner, L.; Jalas, S.; Jeppe, L.; Jolly, S.W.; Kirchen, M.; Leroux, V.; Messner, P.; et al. Decoding Sources of Energy Variability in a Laser-Plasma Accelerator. Phys. Rev. X 2020, 10, 31039. [Google Scholar] [CrossRef]
- Miao, B.; Shrock, J.E.; Feder, L.; Hollinger, R.C.; Morrison, J.; Nedbailo, R.; Picksley, A.; Song, H.; Wang, S.; Rocca, J.J.; et al. Multi-GeV Electron Bunches from an All-Optical Laser Wakefield Accelerator. Phys. Rev. X 2022, 12, 31038. [Google Scholar] [CrossRef]
- Aniculaesei, C.; Ha, T.; Yoffe, S.; Labun, L.; Milton, S.; McCary, E.; Spinks, M.M.; Quevedo, H.J.; Labun, O.Z.; Sain, R.; et al. The Acceleration of a High-Charge Electron Bunch to 10 GeV in a 10-Cm Nanoparticle-Assisted Wakefield Accelerator. Matter Radiat. Extrem. 2023, 9, 014001. [Google Scholar] [CrossRef]
- Geddes, C.G.R.; Toth, C.; van Tilborg, J.; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P. High-Quality Electron Beams from a Laser Wakefield Accelerator Using Plasma-Channel Guiding. Nature 2004, 431, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Mangles, S.P.D.; Murphy, C.D.; Najmudin, Z.; Thomas, A.G.R.; Collier, J.L.; Dangor, A.E.; Divall, E.J.; Foster, P.S.; Gallacher, J.G.; Hooker, C.J.; et al. Monoenergetic Beams of Relativistic Electrons from Intense Laser–Plasma Interactions. Nature 2004, 431, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Faure, J.; Glinec, Y.; Pukhov, A.; Kiselev, S.; Gordienko, S.; Lefebvre, E.; Rousseau, J.-P.; Burgy, F.; Malka, V. A Laser–Plasma Accelerator Producing Monoenergetic Electron Beams. Nature 2004, 431, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Shrock, J.E.; Rockafellow, E.; Miao, B.; Le, M.; Hollinger, R.C.; Wang, S.; Gonsalves, A.J.; Picksley, A.; Rocca, J.J.; Milchberg, H.M. Guided Mode Evolution and Ionization Injection in Meter-Scale Multi-GeV Laser Wakefield Accelerators. Phys. Rev. Lett. 2024, 133, 45002. [Google Scholar] [CrossRef]
- Brümmer, T.; Debus, A.; Pausch, R.; Osterhoff, J.; Grüner, F. Design Study for a Compact Laser-Driven Source for Medical x-Ray Fluorescence Imaging. Phys. Rev. Accel. Beams 2020, 23, 31601. [Google Scholar] [CrossRef]
- Khrennikov, K.; Wenz, J.; Buck, A.; Xu, J.; Heigoldt, M.; Veisz, L.; Karsch, S. Tunable All-Optical Quasimonochromatic Thomson X-Ray Source in the Nonlinear Regime. Phys. Rev. Lett. 2015, 114, 195003. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Feng, K.; Ke, L.; Yu, C.; Xu, Y.; Qi, R.; Chen, Y.; Qin, Z.; Zhang, Z.; Fang, M.; et al. Free-Electron Lasing at 27 Nanometres Based on a Laser Wakefield Accelerator. Nature 2021, 595, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Labat, M.; Cabadağ, J.C.; Ghaith, A.; Irman, A.; Berlioux, A.; Berteaud, P.; Blache, F.; Bock, S.; Bouvet, F.; Briquez, F.; et al. Seeded Free-Electron Laser Driven by a Compact Laser Plasma Accelerator. Nat. Photonics 2023, 17, 150–156. [Google Scholar] [CrossRef]
- Pompili, R.; Alesini, D.; Anania, M.P.; Arjmand, S.; Behtouei, M.; Bellaveglia, M.; Biagioni, A.; Buonomo, B.; Cardelli, F.; Carpanese, M.; et al. Free-Electron Lasing with Compact Beam-Driven Plasma Wakefield Accelerator. Nature 2022, 605, 659–662. [Google Scholar] [CrossRef]
- Feldhaus, J.; Krikunova, M.; Meyer, M.; Möller, T.; Moshammer, R.; Rudenko, A.; Tschentscher, T.; Ullrich, J. AMO Science at the FLASH and European XFEL Free-Electron Laser Facilities. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 164002. [Google Scholar] [CrossRef]
- Zymaková, A.; Precek, M.; Picchiotti, A.; Błachucki, W.; Zymak, I.; Szlachetko, J.; Vankó, G.; Németh, Z.; Sá, J.; Wiste, T.; et al. X-Ray Spectroscopy Station for Sample Characterization at ELI Beamlines. Sci. Rep. 2023, 13, 17258. [Google Scholar] [CrossRef]
- Corde, S.; Ta Phuoc, K.; Lambert, G.; Fitour, R.; Malka, V.; Rousse, A.; Beck, A.; Lefebvre, E. Femtosecond x Rays from Laser-Plasma Accelerators. Rev. Mod. Phys. 2013, 85, 1–48. [Google Scholar] [CrossRef]
- Döpp, A.; Mahieu, B.; Lifschitz, A.; Thaury, C.; Doche, A.; Guillaume, E.; Grittani, G.; Lundh, O.; Hansson, M.; Gautier, J.; et al. Stable Femtosecond X-Rays with Tunable Polarization from a Laser-Driven Accelerator. Light Sci. Appl. 2017, 6, e17086. [Google Scholar] [CrossRef]
- Zymak, I.; Žabka, J.; Polášek, M.; Sanderink, A.; Lebreton, J.-P.; Gaubicher, B.; Cherville, B.; Zymaková, A.; Briois, C. A High-Resolution Mass Spectrometer for the Experimental Study of the Gas Composition in Planetary Environments: First Laboratory Results. Aerospace 2023, 10, 522. [Google Scholar] [CrossRef]
- Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F.S.; Mori, W.B.; Vieira, J.; Fonseca, R.A.; Silva, L.O. Generating Multi-GeV Electron Bunches Using Single Stage Laser Wakefield Acceleration in a 3D Nonlinear Regime. Phys. Rev. Spec. Top.-Accel. Beams 2007, 10, 61301. [Google Scholar] [CrossRef]
- He, Z.-H.; Hou, B.; Nees, J.A.; Easter, J.H.; Faure, J.; Krushelnick, K.; Thomas, A.G.R. High Repetition-Rate Wakefield Electron Source Generated by Few-Millijoule, 30 Fs Laser Pulses on a Density Downramp. New J. Phys. 2013, 15, 53016. [Google Scholar] [CrossRef]
- Guénot, D.; Gustas, D.; Vernier, A.; Beaurepaire, B.; Böhle, F.; Bocoum, M.; Lozano, M.; Jullien, A.; Lopez-Martens, R.; Lifschitz, A.; et al. Relativistic Electron Beams Driven by KHz Single-Cycle Light Pulses. Nat. Photonics 2017, 11, 293–296. [Google Scholar] [CrossRef]
- Valenta, P.; Esirkepov, T.Z.; Koga, J.K.; Nečas, A.; Grittani, G.M.; Lazzarini, C.M.; Klimo, O.; Korn, G.; Bulanov, S. V Polarity Reversal of Wakefields Driven by Ultrashort Pulse Laser. Phys. Rev. E 2020, 102, 53216. [Google Scholar] [CrossRef]
- Lazzarini, C.M.; Goncalves, L.V.; Grittani, G.M.; Lorenz, S.; Nevrkla, M.; Valenta, P.; Levato, T.; Bulanov, S.V.; Korn, G. Electron Acceleration at ELI-Beamlines: Towards High-Energy and High-Repetition Rate Accelerators. Int. J. Mod. Phys. A 2019, 34, 1943010. [Google Scholar] [CrossRef]
- Salehi, F.; Le, M.; Railing, L.; Kolesik, M.; Milchberg, H.M. Laser-Accelerated, Low-Divergence 15-MeV Quasimonoenergetic Electron Bunches at 1 KHz. Phys. Rev. X 2021, 11, 21055. [Google Scholar] [CrossRef]
- Cavallone, M.; Rovige, L.; Huijts, J.; Bayart, É.; Delorme, R.; Vernier, A.; Jorge, P.G.; Moeckli, R.; Deutsch, E.; Faure, J.; et al. Dosimetric Characterisation and Application to Radiation Biology of a KHz Laser-Driven Electron Beam. Appl. Phys. B 2021, 127, 57. [Google Scholar] [CrossRef]
- Schulte, R.; Johnstone, C.; Boucher, S.; Esarey, E.; Geddes, C.G.R.; Kravchenko, M.; Kutsaev, S.; Loo, B.W.; Méot, F.; Mustapha, B.; et al. Transformative Technology for FLASH Radiation Therapy. Appl. Sci. 2023, 13, 5021. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, C.M.; Grittani, G.M.; Valenta, P.; Zymak, I.; Antipenkov, R.; Chaulagain, U.; Goncalves, L.V.N.; Grenfell, A.; Lamač, M.; Lorenz, S.; et al. Ultrarelativistic Electron Beams Accelerated by Terawatt Scalable KHz Laser. Phys. Plasmas 2024, 31, 030703. [Google Scholar] [CrossRef]
- Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J.P.; De Waele, V.; Marignier, J.L.; Mostafavi, M. Absolute Calibration for a Broad Range Single Shot Electron Spectrometer. Rev. Sci. Instrum. 2006, 77, 103301. [Google Scholar] [CrossRef]
- Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S.D.; Hidding, B.; Kudyakov, T.; Sears, C.M.S.; Veisz, L.; et al. Absolute Charge Calibration of Scintillating Screens for Relativistic Electron Detection. Rev. Sci. Instrum. 2010, 81, 033301. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, S.; Grittani, G.M.; Kondo, K.; Kon, A.; Liu, Y.-K.; Sagisaka, A.; Ogura, K.; Nakanii, N.; Huang, K.; Bierwage, A.; et al. In-Vacuum Post-Compression of Optical Probe Pulses for Relativistic Plasma Diagnostics. High Power Laser Sci. Eng. 2024, 12, e53. [Google Scholar] [CrossRef]
- Vishnyakov, E.A.; Sagisaka, A.; Ogura, K.; Esirkepov, T.Z.; Gonzalez-Izquierdo, B.; Armstrong, C.D.; Pikuz, T.A.; Pikuz, S.A.; Yan, W.; Jeong, T.M.; et al. Metrology for Sub-Rayleigh-Length Target Positioning in ~1022 W/Cm2 Laser–Plasma Experiments. High Power Laser Sci. Eng. 2024, 12, e32. [Google Scholar] [CrossRef]
- Lorenz, S.; Grittani, G.; Goncalves, L.V.N.; Lazzarini, C.M.; Limpouch, J.; Nevrkla, M.; Bulanov, S.; Korn, G. Tomographic Reconstruction Algorithms for Structured Gas Density Profiles of the Targets for Laser Wakefield Acceleration. Meas. Sci. Technol. 2020, 31, 085205. [Google Scholar] [CrossRef]
- Lorenz, S.; Grittani, G.M.; Chacon-Golcher, E.; Lazzarini, C.M.; Limpouch, J.; Nawaz, F.; Nevrkla, M.; Vilanova, L.; Levato, T. Characterization of Supersonic and Subsonic Gas Targets for Laser Wakefield Electron Acceleration Experiments. Matter Radiat. Extrem. 2019, 4, 015401. [Google Scholar] [CrossRef]
- Downer, M.C.; Zgadzaj, R.; Debus, A.; Schramm, U.; Kaluza, M.C. Diagnostics for Plasma-Based Electron Accelerators. Rev. Mod. Phys. 2018, 90, 35002. [Google Scholar] [CrossRef]
- Cha, H.J.; Choi, I.W.; Kim, H.T.; Kim, I.J.; Nam, K.H.; Jeong, T.M.; Lee, J. Absolute Energy Calibration for Relativistic Electron Beams with Pointing Instability from a Laser-Plasma Accelerator. Rev. Sci. Instrum. 2012, 83, 63301. [Google Scholar] [CrossRef]
- Costa, G.; Anania, M.P.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Ferrario, M.; Filippi, F.; Marocchino, A.; Mira, F.; et al. Characterization of Self-Injected Electron Beams from LWFA Experiments at SPARC_LAB. Nucl. Instrum. Methods Phys. Res. A 2018, 909, 118–122. [Google Scholar] [CrossRef]
- Russell, B.K.; Campbell, P.T.; Qian, Q.; Cardarelli, J.A.; Bulanov, S.S.; Bulanov, S.V.; Grittani, G.M.; Seipt, D.; Willingale, L.; Thomas, A.G.R. Ultrafast Relativistic Electron Probing of Extreme Magnetic Fields. Phys. Plasmas 2023, 30, 093105. [Google Scholar] [CrossRef]
- Valenta, P.; Grittani, G.M.; Lazzarini, C.M.; Klimo, O.; Bulanov, S. V On the Electromagnetic-Electron Rings Originating from the Interaction of High-Power Short-Pulse Laser and Underdense Plasma. Phys. Plasmas 2021, 28, 122104. [Google Scholar] [CrossRef]
- Kaganovich, D.; Gordon, D.F.; Ting, A. Observation of Large-Angle Quasimonoenergetic Electrons from a Laser Wakefield. Phys. Rev. Lett. 2008, 100, 215002. [Google Scholar] [CrossRef] [PubMed]
- Pollock, B.B.; Tsung, F.S.; Albert, F.; Shaw, J.L.; Clayton, C.E.; Davidson, A.; Lemos, N.; Marsh, K.A.; Pak, A.; Ralph, J.E.; et al. Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator. Phys. Rev. Lett. 2015, 115, 55004. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Wan, W.; Ybarrolaza, N.; Syversrud, D.; Wallig, J.; Leemans, W.P. Broadband Single-Shot Electron Spectrometer for GeV-Class Laser-Plasma-Based Accelerators. Rev. Sci. Instrum. 2008, 79, 053301. [Google Scholar] [CrossRef]
- Chubar, O.; Elleaume, P.; Chavanne, J. A Three-Dimensional Magnetostatics Computer Code for Insertion Devices. J. Synchrotron Radiat. 1998, 5, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Elleaume, P.; Chubar, O.; Chavanne, J. Computing 3D Magnetic Field from Insertion Devices. In Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167), Vancouver, BC, Canada, 16 May 1997; pp. 3509–3511. [Google Scholar]
- Dahl, D.A. SIMION for the Personal Computer in Reflection. Int. J. Mass. Spectrom. 2000, 200, 3–25. [Google Scholar] [CrossRef]
- Battistoni, G.; Boehlen, T.; Cerutti, F.; Chin, P.W.; Esposito, L.S.; Fassò, A.; Ferrari, A.; Lechner, A.; Empl, A.; Mairani, A.; et al. Overview of the FLUKA Code. Ann. Nucl. Energy 2015, 82, 10–18. [Google Scholar] [CrossRef]
- Ahdida, C.; Bozzato, D.; Calzolari, D.; Cerutti, F.; Charitonidis, N.; Cimmino, A.; Coronetti, A.; D’Alessandro, G.L.; Donadon Servelle, A.; Esposito, L.S.; et al. New Capabilities of the FLUKA Multi-Purpose Code. Front. Phys. 2022, 9, 788253. [Google Scholar] [CrossRef]
- Horváth, D.; Grittani, G.; Precek, M.; Versaci, R.; Bulanov, S.V.; Olšovcová, V. Time Dynamics of the Dose Deposited by Relativistic Ultra-Short Electron Beams. Phys. Med. Biol. 2023, 68, 22NT01. [Google Scholar] [CrossRef]
- Chojnowski, J.M.; Taylor, L.M.; Sykes, J.R.; Thwaites, D.I. Beam Focal Spot Position Determination for an Elekta Linac with the Agility® Head; Practical Guide with a Ready-to-Go Procedure. J. Appl. Clin. Med. Phys. 2018, 19, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Van Eeden, D.; Sachse, K.N.; du Plessis, F.C.P. Validation of a Lévy Electron Energy Straggling Model for an Elekta Synergy® Linear Accelerator. Appl. Radiat. Isot. 2020, 164, 109244. [Google Scholar] [CrossRef] [PubMed]
- Andreo, P.; Burns, D.T.; Hohlfeld, K.; Huq, M.S.; Kanai, T.; Laitano, F.; Smythe, V.G.; Vynckier, S. ; Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water; Technical Reports Series No. 398; International Atomic Energy Agency (IAEA): Vienna, Austria, 2000; ISBN 0074-1914. [Google Scholar]
- Water-Equivalent RW3 Slab Phantom with Chamber Adaptation Plates for Therapy Dosimetry. Available online: https://www.ptwdosimetry.com/en/products/rw3-slab-phantom (accessed on 15 August 2024).
- PPC05 Plane Parallel Chamber for Absolute and Relative Electron Beam Dosimetry. Available online: https://www.iba-dosimetry.com/product/ppc05-plane-parallel-chamber (accessed on 15 August 2024).
- Benedict, S.H.; Yenice, K.M.; Followill, D.; Galvin, J.M.; Hinson, W.; Kavanagh, B.; Keall, P.; Lovelock, M.; Meeks, S.; Papiez, L.; et al. Stereotactic Body Radiation Therapy: The Report of AAPM Task Group 101. Med. Phys. 2010, 37, 4078–4101. [Google Scholar] [CrossRef] [PubMed]
- Saidani, I.; Salem, L.B.; Besbes, M. 34A Small Field Dosimetry for Electron Beams Using Four Types of Detectors. Phys. Medica 2018, 56, 55. [Google Scholar] [CrossRef]
- Bayatiani, M.R.; Aliasgharzadeh, A.; Seif, F.; Mohaghegh, F.; Fallahi, F. Comparison of Dosimetric Parameters of Small-Field Electron Beams between Advanced Markus, Semiflex 3D, and Diode E Responses. Radiol. Phys. Technol. 2020, 13, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Instruction for Use—Technical Reference Manual; Elekta: Stockholm, Sweden, 2011.
- Apaza Veliz, D.G.; Wilches Visbal, J.H.; Abrego, F.C.; Vega Ramírez, J.L. Monte Carlo Calculation of the Energy Spectrum of a 6 MeV Electron Beam Using PENetration and Energy Loss of Positrons and Electrons Code. J. Med. Phys. 2020, 45, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Rezzoug, M.; Zerfaoui, M.; Oulhouq, Y.; Rrhioua, A. Using PRIMO to Determine the Initial Beam Parameters of Elekta Synergy Linac for Electron Beam Energies of 6, 9, 12, and 15 MeV. Rep. Pract. Oncol. Radiother. 2023, 28, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Basler Ace AcA2040-25gm—EMVA Data. Available online: https://www2.baslerweb.com/en/downloads/document-downloads/basler-ace-aca2040-25gm-emva-data/?_gl=1*1nkbzpj*_up*MQ..&gclid=EAIaIQobChMIrpycjsP2hwMVI59oCR2TOgmoEAAYAiAAEgLUNPD_BwE (accessed on 15 August 2024).
Nominal Beam Energy [MeV] | RW3 Slab Width [cm] | Absorbed Dose [Gy] | Dose Error [Gy] |
---|---|---|---|
4 | 1 | 0.260 | 0.008 |
6 | 1 | 0.45 | 0.01 |
8 | 1 | 0.60 | 0.02 |
10 | 1 | 0.72 | 0.02 |
10 | 2 | 0.60 | 0.02 |
12 | 2 | 0.74 | 0.02 |
15 | 2 | 0.88 | 0.03 |
18 | 2 | 1.02 | 0.03 |
20 | 2 | 1.07 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zymak, I.; Favetta, M.; Grittani, G.M.; Lazzarini, C.M.; Tassielli, G.; Grenfell, A.; Goncalves, L.; Lorenz, S.; Sluková, V.; Vitha, F.; et al. Characterization of kHz Repetition Rate Laser-Driven Electron Beams by an Inhomogeneous Field Dipole Magnet Spectrometer. Photonics 2024, 11, 1208. https://doi.org/10.3390/photonics11121208
Zymak I, Favetta M, Grittani GM, Lazzarini CM, Tassielli G, Grenfell A, Goncalves L, Lorenz S, Sluková V, Vitha F, et al. Characterization of kHz Repetition Rate Laser-Driven Electron Beams by an Inhomogeneous Field Dipole Magnet Spectrometer. Photonics. 2024; 11(12):1208. https://doi.org/10.3390/photonics11121208
Chicago/Turabian StyleZymak, Illia, Marco Favetta, Gabriele Maria Grittani, Carlo Maria Lazzarini, Gianfranco Tassielli, Annika Grenfell, Leonardo Goncalves, Sebastian Lorenz, Vanda Sluková, Filip Vitha, and et al. 2024. "Characterization of kHz Repetition Rate Laser-Driven Electron Beams by an Inhomogeneous Field Dipole Magnet Spectrometer" Photonics 11, no. 12: 1208. https://doi.org/10.3390/photonics11121208
APA StyleZymak, I., Favetta, M., Grittani, G. M., Lazzarini, C. M., Tassielli, G., Grenfell, A., Goncalves, L., Lorenz, S., Sluková, V., Vitha, F., Versaci, R., Chacon-Golcher, E., Nevrkla, M., Šišma, J., Antipenkov, R., Šobr, V., Szuba, W., Staufer, T., Grüner, F., ... Bulanov, S. V. (2024). Characterization of kHz Repetition Rate Laser-Driven Electron Beams by an Inhomogeneous Field Dipole Magnet Spectrometer. Photonics, 11(12), 1208. https://doi.org/10.3390/photonics11121208