Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hangyo, M. Development and Future Prospects of Terahertz Technology. Jpn. J. Appl. Phys. 2015, 54, 120101. [Google Scholar] [CrossRef]
- Ota, M.; Kan, K.; Komada, S.; Wang, Y.; Agulto, V.C.; Mag-usara, V.K.; Arikawa, Y.; Asakawa, M.R.; Sakawa, Y.; Matsui, T.; et al. Ultrafast Visualization of an Electric Field under the Lorentz Transformation. Nat. Phys. 2022, 18, 1436–1440. [Google Scholar] [CrossRef]
- Kleine-Ostmann, T.; Nagatsuma, T. A Review on Terahertz Communications Research. J. Infrared Millim. Terahertz Waves 2011, 32, 143–171. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yamaguchi, M.; Miyamaru, F.; Tani, M.; Hangyo, M.; Ikeda, T.; Matsushita, A.; Koide, K.; Tatsuno, M.; Minami, Y. Noninvasive Inspection of C-4 Explosive in Mails by Terahertz Time-Domain Spectroscopy. Jpn. J. Appl. Phys. Part 2 Lett. 2004, 43, L414. [Google Scholar] [CrossRef]
- Castro-Camus, E.; Koch, M.; Mittleman, D.M. Recent Advances in Terahertz Imaging: 1999 to 2021. Appl. Phys. B 2022, 128, 12. [Google Scholar] [CrossRef]
- Zhang, Z.; Kanega, M.; Maruyama, K.; Kurihara, T.; Nakajima, M.; Tachizaki, T.; Sato, M.; Kanemitsu, Y.; Hirori, H. Spin Switching in Sm0.7Er0.3FeO3 Triggered by Terahertz Magnetic-Field Pulses. Nat. Mater. 2024. [Google Scholar] [CrossRef]
- Markelz, A.G.; Mittleman, D.M. Perspective on Terahertz Applications in Bioscience and Biotechnology. ACS Photonics 2022, 9, 1117–1126. [Google Scholar] [CrossRef]
- Singh, G.; Singh Sandha, K.; Kansal, A. GA Optimized Novel Design and Analysis of Graphene-Based Antennas for THz Spectroscopic Security Applications. J. Magn. Magn. Mater. 2024, 608, 172454. [Google Scholar] [CrossRef]
- Agulto, V.C.; Iwamoto, T.; Kitahara, H.; Toya, K.; Mag-usara, V.K.; Imanishi, M.; Mori, Y.; Yoshimura, M.; Nakajima, M. Terahertz Time-Domain Ellipsometry with High Precision for the Evaluation of GaN Crystals with Carrier Densities up to 1020 cm−3. Sci. Rep. 2021, 11, 18129. [Google Scholar] [CrossRef] [PubMed]
- Baxter, J.B.; Guglietta, G.W. Terahertz Spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, R.; Hendry, E.; Shan, J.; Heinz, T.F.; Bonn, M. Carrier Dynamics in Semiconductors Studied with Time-Resolved Terahertz Spectroscopy. Rev. Mod. Phys. 2011, 83, 543–586. [Google Scholar] [CrossRef]
- Kampfrath, T.; Tanaka, K.; Nelson, K.A. Resonant and Nonresonant Control over Matter and Light by Intense Terahertz Transients. Nat. Photonics 2013, 7, 680–690. [Google Scholar] [CrossRef]
- Li, G.; Nie, X.; Liao, Y.; Yin, W.; Zhou, W.; Gao, Y.; Xia, N.; Cui, H. Photogenerated Carrier Density Dependence of Ultrafast Carrier Dynamics in Intrinsic 6H-SiC Measured by Optical-Pump Terahertz-Probe Spectroscopy. Opt. Commun. 2022, 511, 127979. [Google Scholar] [CrossRef]
- Wang, J.; Cai, W.; Lu, W.; Lu, S.; Kano, E.; Agulto, V.C.; Sarkar, B.; Watanabe, H.; Ikarashi, N.; Iwamoto, T.; et al. Observation of 2D-Magnesium-Intercalated Gallium Nitride Superlattices. Nature 2024, 631, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Vieweg, N.; Rettich, F.; Deninger, A.; Roehle, H.; Dietz, R.; Göbel, T.; Schell, M. Terahertz-Time Domain Spectrometer with 90 DB Peak Dynamic Range. J. Infrared Millim. Terahertz Waves 2014, 35, 823–832. [Google Scholar] [CrossRef]
- Yardimci, N.T.; Lu, H.; Jarrahi, M. High Power Telecommunication-Compatible Photoconductive Terahertz Emitters Based on Plasmonic Nano-Antenna Arrays. Appl. Phys. Lett. 2016, 109, 191103. [Google Scholar] [CrossRef]
- Markelz, A.G.; Asmar, N.G.; Brar, B.; Gwinn, E.G. Interband Impact Ionization by Terahertz Illumination of InAs Heterostructures. Appl. Phys. Lett. 1996, 69, 3975–3977. [Google Scholar] [CrossRef]
- Piyathilaka, H.P.; Sooriyagoda, R.; Dewasurendra, V.; Johnson, M.B.; Zawilski, K.T.; Schunemann, P.G.; Bristow, A.D. Terahertz Generation by Optical Rectification in Chalcopyrite Crystals ZnGeP2, CdGeP2 and CdSiP2. Opt. Express 2019, 27, 16958. [Google Scholar] [CrossRef]
- Seifert, T.; Jaiswal, S.; Martens, U.; Hannegan, J.; Braun, L.; Maldonado, P.; Freimuth, F.; Kronenberg, A.; Henrizi, J.; Radu, I.; et al. Efficient Metallic Spintronic Emitters of Ultrabroadband Terahertz Radiation. Nat. Photonics 2016, 10, 483–488. [Google Scholar] [CrossRef]
- Qiu, H.S.; Kato, K.; Hirota, K.; Sarukura, N.; Yoshimura, M.; Nakajima, M. Layer Thickness Dependence of the Terahertz Emission Based on Spin Current in Ferromagnetic Heterostructures. Opt. Express 2018, 26, 15247. [Google Scholar] [CrossRef]
- Yadav, S.; Kumari, M.; Nayak, D.; Moona, G.; Sharma, R.; Vijayan, N.; Jewariya, M. Nonlinear Optical Single Crystals for Terahertz Generation and Detection. J. Nonlinear Opt. Phys. Mater. 2022, 31, 2230001. [Google Scholar] [CrossRef]
- Polyushkin, D.K.; Hendry, E.; Stone, E.K.; Barnes, W.L. THz Generation from Plasmonic Nanoparticle Arrays. Nano Lett. 2011, 11, 4718–4724. [Google Scholar] [CrossRef]
- Luo, L.; Chatzakis, I.; Wang, J.; Niesler, F.B.P.; Wegener, M.; Koschny, T.; Soukoulis, C.M. Broadband Terahertz Generation from Metamaterials. Nat. Commun. 2014, 5, 3055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mu, K.; Zhou, Y.; Wang, H.; Zhang, C.; Zhang, X.-C. High-Power THz to IR Emission by Femtosecond Laser Irradiation of Random 2D Metallic Nanostructures. Sci. Rep. 2015, 5, 12536. [Google Scholar] [CrossRef]
- Kato, K.; Takano, K.; Tadokoro, Y.; Nakajima, M. Terahertz Wave Generation from Spontaneously Formed Nanostructures in Silver Nanoparticle Ink. Opt. Lett. 2016, 41, 2125. [Google Scholar] [CrossRef] [PubMed]
- Takano, K.; Asai, M.; Kato, K.; Komiyama, H.; Yamaguchi, A.; Iyoda, T.; Tadokoro, Y.; Nakajima, M.; Bakunov, M.I. Terahertz Emission from Gold Nanorods Irradiated by Ultrashort Laser Pulses of Different Wavelengths. Sci. Rep. 2019, 9, 3280. [Google Scholar] [CrossRef] [PubMed]
- Welsh, G.H.; Hunt, N.T.; Wynne, K. Terahertz-Pulse Emission through Laser Excitation of Surface Plasmons in a Metal Grating. Phys. Rev. Lett. 2007, 98, 026803. [Google Scholar] [CrossRef]
- Ramakrishnan, G.; Planken, P.C.M. Percolation-Enhanced Generation of Terahertz Pulses by Optical Rectification on Ultrathin Gold Films. Opt. Lett. 2011, 36, 2572. [Google Scholar] [CrossRef]
- Kajikawa, K.; Nagai, Y.; Uchiho, Y.; Ramakrishnan, G.; Kumar, N.; Ramanandan, G.K.P.; Planken, P.C.M. Terahertz Emission from Surface-Immobilized Gold Nanospheres. Opt. Lett. 2012, 37, 4053. [Google Scholar] [CrossRef]
- Ramanandan, G.K.P.; Ramakrishnan, G.; Kumar, N.; Adam, A.J.L.; Planken, P.C.M. Emission of Terahertz Pulses from Nanostructured Metal Surfaces. J. Phys. D Appl. Phys. 2014, 47, 374003. [Google Scholar] [CrossRef]
- Liu, Y.; Park, S.-G.; Weiner, A.M. Terahertz Waveform Synthesis via Optical Pulse Shaping. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 709–719. [Google Scholar] [CrossRef]
- Sato, M.; Higuchi, T.; Kanda, N.; Konishi, K.; Yoshioka, K.; Suzuki, T.; Misawa, K.; Kuwata-Gonokami, M. Terahertz Polarization Pulse Shaping with Arbitrary Field Control. Nat. Photonics 2013, 7, 724–731. [Google Scholar] [CrossRef]
- Miyamaru, F.; Hangyo, M. Finite Size Effect of Transmission Property for Metal Hole Arrays in Subterahertz Region. Appl. Phys. Lett. 2004, 84, 2742–2744. [Google Scholar] [CrossRef]
- Danielson, J.R.; Amer, N.; Lee, Y.S. Generation of Arbitrary Terahertz Wave Forms in Fanned-out Periodically Poled Lithium Niobate. Appl. Phys. Lett. 2006, 89, 211118. [Google Scholar] [CrossRef]
- Zhu, F.; Lin, Y.-S. Programmable Multidigit Metamaterial Using Terahertz Electric Spilt-Ring Resonator. Opt. Laser Technol. 2021, 134, 106635. [Google Scholar] [CrossRef]
- Lee, Y.S.; Amer, N.; Hurlbut, W.C. Terahertz Pulse Shaping via Optical Rectification in Poled Lithium Niobate. Appl. Phys. Lett. 2003, 82, 170–172. [Google Scholar] [CrossRef]
- Polyushkin, D.K.; Hendry, E.; Barnes, W.L. Controlling the Generation of THz Radiation from Metallic Films Using Periodic Microstructure. Appl. Phys. B 2015, 120, 53–59. [Google Scholar] [CrossRef]
- Murata, K.; Matsumoto, J.; Tezuka, A.; Matsuba, Y.; Yokoyama, H. Super-Fine Ink-Jet Printing: Toward the Minimal Manufacturing System. Microsyst. Technol. 2005, 12, 2–7. [Google Scholar] [CrossRef]
- Oda, M.; Ohsawa, M.; Tei, K.; Hayashi, S.; Hayashi, Y. Individually Dispersed Nanoparticles Formed by Gas Evaporation Method and Their Applications. In Proceedings of the NIP & Digital Fabrication Conference, 2008 International Conference on Digital Printing Technologies, Society for Imaging Science and Technology, Pittsburgh, PA, USA, 6–11 September 2008; Volume 2008, p. 375. [Google Scholar]
- Tan, H.W.; An, J.; Chua, C.K.; Tran, T. Metallic Nanoparticle Inks for 3D Printing of Electronics. Adv. Electron. Mater. 2019, 5, 1800831. [Google Scholar] [CrossRef]
- Walther, M.; Ortner, A.; Meier, H.; Löffelmann, U.; Smith, P.J.; Korvink, J.G. Terahertz Metamaterials Fabricated by Inkjet Printing. Appl. Phys. Lett. 2009, 95, 251107. [Google Scholar] [CrossRef]
- Takano, K.; Kawabata, T.; Hsieh, C.F.; Akiyama, K.; Miyamaru, F.; Abe, Y.; Tokuda, Y.; Pan, R.P.; Pan, C.L.; Hangyo, M. Fabrication of Terahertz Planar Metamaterials Using a Super-Fine Ink-Jet Printer. Appl. Phys. Express 2010, 3, 016701. [Google Scholar] [CrossRef]
- Takano, K.; Chiyoda, Y.; Nishida, T.; Miyamaru, F.; Kawabata, T.; Sasaki, H.; Takeda, M.W.; Hangyo, M. Optical Switching of Terahertz Radiation from Meta-Atom-Loaded Photoconductive Antennas. Appl. Phys. Lett. 2011, 99, 19–22. [Google Scholar] [CrossRef]
- Suo, H.; Takano, K.; Ohno, S.; Kurosawa, H.; Nakayama, K.; Ishihara, T.; Hangyo, M. Polarization Property of Terahertz Wave Emission from Gammadion-Type Photoconductive Antennas. Appl. Phys. Lett. 2013, 103, 111106. [Google Scholar] [CrossRef]
- Takano, K.; Harada, H.; Yoshimura, M.; Nakajima, M. Quantized Conductance Observed during Sintering of Silver Nanoparticles by Intense Terahertz Pulses. Appl. Phys. Lett. 2018, 112, 163102. [Google Scholar] [CrossRef]
- Giuliano, B.M.; Gavdush, A.A.; Müller, B.; Zaytsev, K.I.; Grassi, T.; Ivlev, A.V.; Palumbo, M.E.; Baratta, G.A.; Scirè, C.; Komandin, G.A.; et al. Broadband Spectroscopy of Astrophysical Ice Analogues. Astron. Astrophys. 2019, 629, A112. [Google Scholar] [CrossRef]
- Padilla, W.J.; Taylor, A.J.; Highstrete, C.; Lee, M.; Averitt, R.D. Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies. Phys. Rev. Lett. 2006, 96, 107401. [Google Scholar] [CrossRef]
- Ako, R.T.; Lee, W.S.L.; Bhaskaran, M.; Sriram, S.; Withayachumnankul, W. Broadband and Wide-Angle Reflective Linear Polarization Converter for Terahertz Waves. APL Photonics 2019, 4, 096104. [Google Scholar] [CrossRef]
- Zhang, X.C.; Auston, D.H. Optoelectronic Measurement of Semiconductor Surfaces and Interfaces with Femtosecond Optics. J. Appl. Phys. 1992, 71, 326–338. [Google Scholar] [CrossRef]
- Polyushkin, D.K.; Márton, I.; Rácz, P.; Dombi, P.; Hendry, E.; Barnes, W.L. Mechanisms of THz Generation from Silver Nanoparticle and Nanohole Arrays Illuminated by 100 Fs Pulses of Infrared Light. Phys. Rev. B 2014, 89, 125426. [Google Scholar] [CrossRef]
- Kurosawa, H.; Ishihara, T. Surface Plasmon Drag Effect in a Dielectrically Modulated Metallic Thin Film. Opt. Express 2012, 20, 1561. [Google Scholar] [CrossRef]
- Xie, L.; Gao, W.; Shu, J.; Ying, Y.; Kono, J. Extraordinary Sensitivity Enhancement by Metasurfaces in Terahertz Detection of Antibiotics. Sci. Rep. 2015, 5, 8671. [Google Scholar] [CrossRef] [PubMed]
Name | Lo (µm) | w (µm) | g (µm) |
---|---|---|---|
S80 | 80 | 20 | 20 |
S55 | 55 | 15 | 25 |
S40 | 40 | 10 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, T.N.K.; Kato, K.; Takano, K.; Fujioka, S.; Nakajima, M. Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures. Photonics 2024, 11, 1209. https://doi.org/10.3390/photonics11121209
Phan TNK, Kato K, Takano K, Fujioka S, Nakajima M. Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures. Photonics. 2024; 11(12):1209. https://doi.org/10.3390/photonics11121209
Chicago/Turabian StylePhan, Thanh Nhat Khoa, Kosaku Kato, Keisuke Takano, Shinsuke Fujioka, and Makoto Nakajima. 2024. "Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures" Photonics 11, no. 12: 1209. https://doi.org/10.3390/photonics11121209
APA StylePhan, T. N. K., Kato, K., Takano, K., Fujioka, S., & Nakajima, M. (2024). Spectral Shape Control of Laser-Induced Terahertz Waves from Micro Split-Ring Resonators Made of Metallic Nanostructures. Photonics, 11(12), 1209. https://doi.org/10.3390/photonics11121209