Efficient Third Harmonic Generation from Magnetic Resonance in Low-Index Dielectric Nanopillars
Abstract
:1. Introduction
2. Technical Design
3. Fabry–Pérot Resonance in the Hybrid Pillar
4. Third Harmonic Generation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Elsevier: Burlington, VT, USA, 2008. [Google Scholar]
- Ma, R.-M.; Oulton, R.F. Applications of nanolasers. Nat. Nanotechnol. 2019, 14, 12–22. [Google Scholar] [CrossRef]
- Rodrigues, S.P.; Lan, S.; Kang, L.; Cui, Y.; Cai, W. Nonlinear Imaging and Spectroscopy of Chiral Metamaterials. Adv. Mater. 2014, 26, 6157–6162. [Google Scholar] [CrossRef]
- Kotov, N. The only way is up. Nat. Mater. 2011, 10, 903–904. [Google Scholar] [CrossRef]
- Tran, R.J.; Sly, K.L.; Conboy, J.C. Applications of Surface Second Harmonic Generation in Biological Sensing. Annu. Rev. Anal. Chem. 2017, 10, 387–414. [Google Scholar] [CrossRef]
- Menon, V.M.; Deych, L.I.; Lisyansky, A.A. Towards polaritonic logic circuits. Nat. Photonics 2010, 4, 345–346. [Google Scholar] [CrossRef]
- Li, G.; Zhang, S.; Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2017, 2, 17010. [Google Scholar] [CrossRef]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. Nanophotonics: Manipulating Light with Plasmons; Pan Stanford: Singapore, 2017. [Google Scholar]
- Tseng, M.L.; Semmlinger, M.; Zhang, M.; Arndt, C.; Huang, T.T.; Yang, J.; Kuo, H.Y.; Su, V.C.; Chen, M.K.; Chu, C.H.; et al. Vacuum ultraviolet nonlinear metalens. Sci. Adv. 2022, 8, eabn5644. [Google Scholar] [CrossRef] [PubMed]
- Kauranen, M.; Zayats, A.V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748. [Google Scholar] [CrossRef]
- Li, Y.; Kang, M.; Shi, J.; Wu, K.; Zhang, S.; Xu, H. Transversely Divergent Second Harmonic Generation by Surface Plasmon Polaritons on Single Metallic Nanowires. Nano Lett. 2017, 17, 7803–7808. [Google Scholar] [CrossRef] [PubMed]
- Butet, J.; Brevet, P.-F.; Martin, O.J.F. Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications. ACS Nano 2015, 9, 10545–10562. [Google Scholar] [CrossRef]
- Kim, S.; Jin, J.; Kim, Y.-J.; Park, I.-Y.; Kim, Y.; Kim, S.-W. High-harmonic generation by resonant plasmon field enhancement. Nature 2008, 453, 757–760. [Google Scholar] [CrossRef]
- Berthelot, J.; Bachelier, G.; Song, M.; Rai, P.; Colas des Francs, G.; Dereux, A.; Bouhelier, A. Silencing and enhancement of second-harmonic generation in optical gap antennas. Opt. Express 2012, 20, 10498–10508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cao, Q.-T.; Wang, Z.; Liu, Y.-X.; Qiu, C.-W.; Yang, L.; Gong, Q.; Xiao, Y.-F. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics 2018, 13, 21–24. [Google Scholar] [CrossRef]
- Michaeli, L.; Keren-Zur, S.; Avayu, O.; Suchowski, H.; Ellenbogen, T. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays. Phys. Rev. Lett. 2017, 118, 243904. [Google Scholar] [CrossRef]
- Staude, I.; Pertsch, T.; Kivshar, Y.S. All-dielectric resonant meta-optics lightens up. ACS Photonics 2019, 6, 802–814. [Google Scholar] [CrossRef]
- Koshelev, K.; Kruk, S.; Melik-Gaykazyan, E.; Choi, J.-H.; Bogdanov, A.; Park, H.-G.; Kivshar, Y. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 2020, 367, 288–292. [Google Scholar] [CrossRef]
- Shcherbakov, M.R.; Neshev, D.N.; Hopkins, B.; Shorokhov, A.S.; Staude, I.; Melik-Gaykazyan, E.V.; Decker, M.; Ezhov, A.A.; Miroshnichenko, A.E.; Brener, I. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 2014, 14, 6488–6492. [Google Scholar] [CrossRef]
- Shibanuma, T.; Grinblat, G.; Albella, P.; Maier, S.A. Efficient Third Harmonic Generation from Metal–Dielectric Hybrid Nanoantennas. Nano Lett. 2017, 17, 2647–2651. [Google Scholar] [CrossRef]
- Grinblat, G.; Li, Y.; Nielsen, M.P.; Oulton, R.F.; Maier, S.A. Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode. Nano Lett. 2016, 16, 4635–4640. [Google Scholar] [CrossRef] [PubMed]
- Semmlinger, M.; Zhang, M.; Tseng, M.L.; Huang, T.-T.; Yang, J.; Tsai, D.P.; Nordlander, P.; Halas, N.J. Generating Third Harmonic Vacuum Ultraviolet Light with a TiO2 Metasurface. Nano Lett. 2019, 19, 8972–8978. [Google Scholar] [CrossRef] [PubMed]
- Sain, B.; Meier, C.; Zentgraf, T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review. Adv. Photonics 2019, 1, 024002. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Lin, Y.; Xiang, J.; Feng, T.; Cao, Q.; Li, J.; Lan, S.; Liu, J. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 2019, 123, 253901. [Google Scholar] [CrossRef] [PubMed]
- Koshelev, K.; Tang, Y.; Li, K.; Choi, D.-Y.; Li, G.; Kivshar, Y. Nonlinear Metasurfaces Governed by Bound States in the Continuum. ACS Photonics 2019, 6, 1639–1644. [Google Scholar] [CrossRef]
- Yang, G.; Dev, S.U.; Allen, M.S.; Allen, J.W.; Harutyunyan, H. Optical Bound States in the Continuum Enabled by Magnetic Resonances Coupled to a Mirror. Nano Lett. 2022, 22, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Rahmani, M.; Zangeneh Kamali, K.; Lamprianidis, A.; Ghirardini, L.; Sautter, J.; Camacho-Morales, R.; Chen, H.; Parry, M.; Staude, I.; et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci. Appl. 2018, 7, 44. [Google Scholar] [CrossRef]
- Shi, J.; Li, Y.; Kang, M.; He, X.; Halas, N.J.; Nordlander, P.; Zhang, S.; Xu, H. Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. Nano Lett. 2019, 19, 3838–3845. [Google Scholar] [CrossRef]
- Shi, J.; Guo, Q.; Shi, Z.; Zhang, S.; Xu, H. Nonlinear nanophotonics based on surface plasmon polaritons. Appl. Phys. Lett. 2021, 119, 130501. [Google Scholar] [CrossRef]
- Shi, J.; He, X.; Chen, W.; Li, Y.; Kang, M.; Cai, Y.; Xu, H. Remote Dual-Cavity Enhanced Second Harmonic Generation in a Hybrid Plasmonic Waveguide. Nano Lett. 2022, 22, 688–694. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Tang, Y.; Zhang, X.; Cai, W.; Liu, Y.; Cao, T.; Li, G. Third harmonic generation from the gold/amorphous silicon hybrid metasurface. Nanophotonics 2022, 11, 2245–2251. [Google Scholar] [CrossRef]
- Slowing, I.I.; Trewyn, B.G.; Giri, S.; Lin, V.S.Y. Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Adv. Funct. Mater. 2007, 17, 1225–1236. [Google Scholar] [CrossRef]
- Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2008, 2, 889–896. [Google Scholar] [CrossRef]
- De, M.; Ghosh, P.S.; Rotello, V.M. Applications of Nanoparticles in Biology. Adv. Mater. 2008, 20, 4225–4241. [Google Scholar] [CrossRef]
- Yu, T.; Malugin, A.; Ghandehari, H. Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity. ACS Nano 2011, 5, 5717–5728. [Google Scholar] [CrossRef]
- Si, Y.; Guo, Z. Superhydrophobic nanocoatings: From materials to fabrications and to applications. Nanoscale 2015, 7, 5922–5946. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.; Cannavale, A.; De Marco, L.; Aricò, A.S.; Cingolani, R.; Gigli, G. Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol−Gel Processing. Langmuir 2009, 25, 6357–6362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Panday, A.; Xu, Y.; Chen, X.; Chen, L.; Ji, C.; Guo, L.J. Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles. Phys. Rev. Lett. 2018, 120, 253902. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lam, S.H.; Lu, W.; Shao, L.; Chow, T.H.; Wang, J. All-State Switching of the Mie Resonance of Conductive Polyaniline Nanospheres. Nano Lett. 2022, 22, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.; Wang, D.; Odom, T.W. Enhanced Fields in Mirror-Backed Low-Index Dielectric Structures. ACS Photonics 2019, 6, 2612–2617. [Google Scholar] [CrossRef]
- Chen, S.; Li, K.F.; Li, G.; Cheah, K.W.; Zhang, S. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect. Light Sci. Appl. 2019, 8, 17. [Google Scholar] [CrossRef]
- Albrecht, G.; Hentschel, M.; Kaiser, S.; Giessen, H. Hybrid organic-plasmonic nanoantennas with enhanced third-harmonic generation. ACS Omega 2017, 2, 2577–2582. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Fischer, T.; Reinhardt, C.; Chichkov, B.N. Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys. Rev. B 2016, 94, 205434. [Google Scholar] [CrossRef]
- Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M.I. Plasmon Hybridization in Nanoparticle Dimers. Nano Lett. 2004, 4, 899–903. [Google Scholar] [CrossRef]
- Kwadrin, A.; Osorio, C.I.; Koenderink, A.F. Backaction in metasurface etalons. Phys. Rev. B 2016, 93, 104301. [Google Scholar] [CrossRef]
- Berkhout, A.; Koenderink, A.F. Perfect absorption and phase singularities in plasmon antenna array etalons. ACS Photonics 2019, 6, 2917–2925. [Google Scholar] [CrossRef]
- Vaičaitis, V.; Paulikas, Š. Conical four-wave mixing in sodium vapour excited by femtosecond laser pulses. Appl. Phys. B 2007, 89, 267–273. [Google Scholar] [CrossRef]
- Summers, A.M.; Ramm, A.S.; Paneru, G.; Kling, M.F.; Flanders, B.N.; Trallero-Herrero, C.A. Optical damage threshold of Au nanowires in strong femtosecond laser fields. Opt. Express 2014, 22, 4235–4246. [Google Scholar] [CrossRef] [PubMed]
- Nie, W. Optical nonlinearity: Phenomena, applications, and materials. Adv. Mater. 1993, 5, 520–545. [Google Scholar] [CrossRef]
- Li, K.; Li, X.; Yuan Lei, D.; Wu, S.; Zhan, Y. Plasmon gap mode-assisted third-harmonic generation from metal film-coupled nanowires. Appl. Phys. Lett. 2014, 104, 261105. [Google Scholar] [CrossRef]
- Vincenti, M.A.; de Ceglia, D.; Roppo, V.; Scalora, M. Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths. Opt. Express 2011, 19, 2064–2078. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, Z.; Sui, Z.; Chen, H.; Zhang, X.; Huang, W.; Guan, H.; Qiu, W.; Dong, J.; Zhu, W.; et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics 2020, 9, 3575–3585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, R.; He, X.; Wang, W.; Zheng, L.; Shi, J. Efficient Third Harmonic Generation from Magnetic Resonance in Low-Index Dielectric Nanopillars. Photonics 2024, 11, 159. https://doi.org/10.3390/photonics11020159
Xie R, He X, Wang W, Zheng L, Shi J. Efficient Third Harmonic Generation from Magnetic Resonance in Low-Index Dielectric Nanopillars. Photonics. 2024; 11(2):159. https://doi.org/10.3390/photonics11020159
Chicago/Turabian StyleXie, Rui, Xiaobo He, Wenqiang Wang, Liren Zheng, and Junjun Shi. 2024. "Efficient Third Harmonic Generation from Magnetic Resonance in Low-Index Dielectric Nanopillars" Photonics 11, no. 2: 159. https://doi.org/10.3390/photonics11020159
APA StyleXie, R., He, X., Wang, W., Zheng, L., & Shi, J. (2024). Efficient Third Harmonic Generation from Magnetic Resonance in Low-Index Dielectric Nanopillars. Photonics, 11(2), 159. https://doi.org/10.3390/photonics11020159