Polarization-Based Digital Histology of Human Skin Biopsies Assisted by Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Substrate Contribution Removal
2.3. Ex Vivo Skin Samples
2.4. Imaging Mueller Polarimeter
3. Results
3.1. Polarimetry
3.2. Deep Learning
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CNN | Convolutional neural network |
LA/LA’ | Linear anisotropic absorption |
LD/LD’ | Linear dichroism |
LB/LB’ | Linear birefringence |
CA | Circular anisotropic absorption |
CD | Circular dichroism |
CB | Circular birefrigence |
RMSE | Root-mean-squared error |
NaN | Not-a-number value |
H | Healthy |
SC | Scleroderma |
LU | Lupus erythematosus |
PS | Psoriasis |
RE | Syndrome of Raynaud |
SCC | Squamous-cell carcinoma |
BCC | Basal-cell carcinoma |
MM | Malignant melanoma |
PSG | Polarization state generator |
PSA | Polarization state analyzer |
FLC | Ferroelectric liquid crystal |
ROIs | Regions of interests |
ROC | Receiver operating characteristic |
References
- Meglinski, I.; Trifonyuk, L.; Bachinsky, V.; Vanchulyak, O.; Bodnar, B.; Sidor, M.; Dubolazov, O.; Ushenko, A.; Ushenko, Y.; Soltys, I.V.; et al. Shedding the Polarized Light on Biological Tissues; Springer Briefs in Applied Science and Technology: Singapore, 2021. [Google Scholar]
- Ghosh, N.; Vitkin, I. Tissue polarimetry: Concepts, challenges, applications, and outlook. J. Biomed. Opt. 2011, 16, 110801. [Google Scholar] [CrossRef]
- Ramella-Roman, J.C.; Novikova, T. (Eds.) Polarized Light in Biomedical Imaging and Sensing: Clinical and Preclinical Applications; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Ramella-Roman, J.C.; Saytashev, I.; Piccini, M. A review of polarization-based imaging technologies for clinical and preclinical applications. J. Opt. 2020, 22, 123001. [Google Scholar] [CrossRef]
- Meglinski, I.; Novikova, T.; Dholakia, K. Polarization and Orbital Angular Momentum of Light in Biomedical Applications: Feature issue introduction. Biomed. Opt. Express 2021, 12, 6255–6258. [Google Scholar] [CrossRef] [PubMed]
- He, C.; He, H.; Chang, J.; Chen, B.; Ma, H.; Booth, M.J. Polarisation optics for biomedical and clinical applications: A review. Light Sci. Appl. 2021, 10, 194. [Google Scholar]
- Dremin, V.; Anin, D.; Sieryi, O.; Borovkova, M.; Näpänkangas, J.; Meglinski, I.; Bykov, A. Imaging of early stage breast cancer with circularly polarized light. Proc. SPIE 2020, 11363, 1136304. [Google Scholar]
- Genova, T.; Borisova, E.; Penkov, N.; Vladimirov, B.; Avramov, L. Synchronous fluorescence spectroscopy with and without polarization sensitivity for colorectal cancer differentiation. Proc. SPIE 2018, 10685, 106852L. [Google Scholar]
- Jacques, S.L.; Roman, J.R.; Lee, K. Imaging superficial tissues with polarized light. Lasers Surg. Med. 2000, 26, 119–129. [Google Scholar] [CrossRef]
- Jacques, S.L.; Ramella-Roman, J.C.; Lee, K. Imaging skin pathology with polarized light. J. Biomed. Opt. 2002, 7, 329–340. [Google Scholar] [CrossRef]
- Robinson, D.; Hoong, K.; Kleijn, W.B.; Doronin, A.; Rehbinder, J.; Vizet, J.; Pierangelo, A.; Novikova, T. Polarimetric imaging for cervical pre-cancer screening aided by machine learning: Ex vivo studies. J. Biomed. Opt. 2023, 28, 102904. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H.R.; Ossikovski, R.; Malfait-Jobart, A.; Lamarque, D.; Novikova, T. Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis. J. Europ. Opt. Soc. Rapid Publ. 2022, 18, 10. [Google Scholar] [CrossRef]
- Rey-Barroso, L.; Peña-Gutiérrez, S.; Yáñez, C.; Burgos-Fernández, F.J.; Vilaseca, M.; Royo, S. Optical Technologies for the Improvement of Skin Cancer Diagnosis: A Review. Sensors 2021, 21, 252. [Google Scholar] [CrossRef] [PubMed]
- Cheong, W.F.; Prahl, S.A.; Welch, A.J. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 1990, 26, 2166–2185. [Google Scholar] [CrossRef]
- Gil, J.J.; Ossikovski, R. Polarized Light and the Mueller Matrix Approach; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Compain, E.; Poirier, S.; Drevillon, B. General and self-consistent method for the calibration of polarization modulators, polarimeters and Mueller-matrix ellipsometers. Appl. Opt. 1999, 38, 3490–3502. [Google Scholar] [CrossRef]
- Cloude, S.R. Conditions for the Physical Realizability of Matrix Operators in Polarimetry. Proc. SPIE 1989, 1166, 177–185. [Google Scholar]
- Ossikovski, R. Differential matrix formalism for depolarizing anisotropic media. Opt. Let. 2011, 36, 2330–2332. [Google Scholar] [CrossRef] [PubMed]
- Ossikovski, R.; Arteaga, O. Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media. Opt. Let. 2014, 39, 4470–4472. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- Ossikovski, R. Analysis of depolarizing Mueller matrices through a symmetric decomposition. J. Opt. Soc. Am. A 2009, 26, 1109–1118. [Google Scholar] [CrossRef]
- Sobin, L.; Gospodarowicz, M.; Wittekind, C. TNM Classification of Malignant Tumors, 7th ed.; International Union Against Cancer (UICC): Geneva, Switzerland, 2009; pp. 255–287. [Google Scholar]
- Day, C. Histopathology. Methods and Protocols, 1st ed.; Humana Press: Totowa, NJ, USA, 2014. [Google Scholar]
- Lee, H.R.; Li, P.; Yoo, T.S.H.; Lotz, C.; Groeber-Becker, F.K.; Dembski, S.; Garcia-Caurel, E.; Ossikovski, R.; Ma, H.; Novikova, T. Digital histology with Mueller microscopy: How to mitigate an impact of tissue cut thickness fluctuations. J. Biomed. Opt. 2019, 24, 076004. [Google Scholar] [CrossRef]
- Ivanov, D.; Dremin, V.; Genova, T.; Bykov, A.; Novikova, T.; Ossikovski, R.; Meglinski, I. Polarization-based histopathology classification of ex vivo colon samples supported by machine learning. Front. Phys. 2021, 9, 814787. [Google Scholar] [CrossRef]
- Deitel, P.; Deitel, H. Intro to Python for Computer Science and Data Science, 1st ed.; Pearson Education: London, UK, 2020. [Google Scholar]
- Francois, C. Deep Learning with Python, 1st ed.; Manning Publications: Shelter Island, NY, USA, 2017. [Google Scholar]
- Rodríguez, C.; Van Eeckhout, A.; Ferrer, L.; Garcia-Caurel, E.; González-Arnay, E.; Campos, J.; Lizana, A. Polarimetric data-based model for tissue recognition. Biomed. Opt. Express 2021, 12, 4852–4872. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Dong, Y.; Yao, Y.; Si, L.; Liu, Y.; He, H.; Ma, H. Probing layered structures by multi-color backscattering polarimetry and machine learning. Biomed. Opt. Express 2021, 12, 4324–4339. [Google Scholar] [CrossRef] [PubMed]
- Howard, F.M.; Dolezal, J.; Kochanny, S.; Schulte, J.; Chen, H.; Heij, L.; Huo, D.; Nanda, R.; Olopade, O.I.; Kather, J.N.; et al. The impact of site-specific digital histology signatures on deep learning model accuracy and bias. Nat. Commun. 2021, 12, 4423. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Swarnkar, T. Machine learning techniques used for the histopathological image analysis of oral cancer—A review. Open Bioinform. J. 2020, 13, 106–118. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, L.; Brown, W.; Little, J.V.; Chen, A.Y.; Myers, L.L.; Sumer, B.D.; Fei, B. Automatic detection of head and neck squamous cell carcinoma on pathologic slides using polarized hyperspectral imaging and machine learning. Proc. SPIE 2021, 11603, 165–173. [Google Scholar]
- Makkithaya, K.N.; Melanthota, S.K.; Kistenev, Y.V.; Bykov, A.; Novikova, T.; Meglinski, I.; Mazumder, N. Machine Learning in Tissue Polarimetry. In Optical Polarimetric Modalities for Biomedical Research; Mazumder, N., Kistenev, Y.V., Borisova, E., Prasada, K.S., Eds.; Springer: Cham, Switzerland, 2023; pp. 425–450. [Google Scholar]
- Lee, H.R.; Lotz, C.; Groeber-Becker, K.; Dembski, S.; Novikova, T. Digital histology with Mueller polarimetry and FastDBSCAN. Appl. Opt. 2022, 61, 9616–9624. [Google Scholar] [CrossRef]
- McKinley, R.; Felger, L.A.; Hewer, E.; Maragkou, T.; Murek, M.; Novikova, T.; Rodríguez-Núñez, O.; Pierangelo, A.; Schucht, P. Machine learning for white matter fibre tract visualization in the human brain via Mueller matrix polarimetric data. Proc. SPIE, Unconv. Opt. Imaging III 2022, 12136, 93–98. [Google Scholar]
- Azzam, R.M.A. Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus. J. Opt. Soc. Am. 1978, 68, 1756–1767. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Pergamon Press: Oxford, UK; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Dong, Y.; Qi, J.; He, H.; He, C.; Liu, S.; Wu, J.; Elson, D.S.; Ma, H. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express 2017, 8, 3643–3655. [Google Scholar] [CrossRef]
- Ivanov, D.; Hoeppel, A.; Weigel, T.; Ossikovski, R.; Dembski, S.; Novikova, T. Assessment of the impact of nanowarming on microstructure of cryopreserved fibroblast-containing 3D tissue models using Mueller polarimetry. Photonics 2023, 10, 1129. [Google Scholar] [CrossRef]
- Du, E.; He, H.; Zeng, N.; Sun, M.; Guo, Y.; Wu, J.; Liu, S.; Ma, H. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt. 2014, 19, 076013. [Google Scholar] [CrossRef]
- Zeng, Z.S.; Cohen, A.M.; Guillem, J.G. Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis. Carcinogenesis 1999, 20, 749–755. [Google Scholar] [CrossRef]
- Lapis, K.; Tímár, J. Role of elastin-matrix interactions in tumor progression. Semin. Cancer Biol. 2002, 12, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Alexandrova, A.Y. Evolution of cell interactions with extracellular matrix during carcinogenesis. Biochemistry 2008, 73, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Conklin, M.W.; Eickhoff, J.C.; Riching, K.M.; Pehlke, C.A.; Eliceiri, K.W.; Provenzano, P.P.; Friedl, A.; Keely, P.J. Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma. Am. J. Pathol. 2011, 178, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Drifka, C.R.; Loeffler, A.G.; Mathewson, K.; Keikhosravi, A.; Eickhoff, J.C.; Liu, Y.; Weber, S.M.; Kao, W.J.; Eliceiri, K.W. Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget 2016, 7, 76197–76213. [Google Scholar] [CrossRef] [PubMed]
- Necula, L.; Matei, L.; Dragu, D.; Pitica, I.; Neagu, A.; Bleotu, C.; Diaconu, C.C.; Chivu-Economescu, M. Collagen Family as Promising Biomarkers and Therapeutic Targets in Cancer. Int. J. Mol. Sci. 2022, 23, 12415. [Google Scholar] [CrossRef] [PubMed]
- Le, D.L.; Nguyen, D.T.; Le, T.H.; Phan, Q.H. Characterization of healthy and cancerous human skin tissue utilizing Stokes–Mueller polarimetry technique. Opt. Commun. 2021, 480, 126460. [Google Scholar] [CrossRef]
- Luu, N.T.; Le, T.H.; Phan, Q.H.; Pham, T.T.H. Characterization of Mueller matrix elements for classifying human skin cancer utilizing random forest algorithm. J. Biomed. Opt. 2021, 26, 075001. [Google Scholar] [CrossRef]
Class | Precision | Recall | F1-Score |
---|---|---|---|
0—Healthy | 0.98 | 0.93 | 0.95 |
1—Syndrome of Raynaud | 0.86 | 0.92 | 0.89 |
2—Scleroderma | 0.93 | 0.92 | 0.92 |
3—Psoriasis | 0.90 | 0.91 | 0.91 |
4—Lupus erythematosus | 0.96 | 0.92 | 0.94 |
5—Basal cell carcinoma | 0.93 | 0.95 | 0.94 |
6—Squamous cell carcinoma | 0.92 | 0.89 | 0.90 |
7—Malignant melanoma | 0.92 | 0.96 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, D.; Zaharieva, L.; Mircheva, V.; Troyanova, P.; Terziev, I.; Ossikovski, R.; Novikova, T.; Genova, T. Polarization-Based Digital Histology of Human Skin Biopsies Assisted by Deep Learning. Photonics 2024, 11, 185. https://doi.org/10.3390/photonics11020185
Ivanov D, Zaharieva L, Mircheva V, Troyanova P, Terziev I, Ossikovski R, Novikova T, Genova T. Polarization-Based Digital Histology of Human Skin Biopsies Assisted by Deep Learning. Photonics. 2024; 11(2):185. https://doi.org/10.3390/photonics11020185
Chicago/Turabian StyleIvanov, Deyan, Lidia Zaharieva, Victoria Mircheva, Petranka Troyanova, Ivan Terziev, Razvigor Ossikovski, Tatiana Novikova, and Tsanislava Genova. 2024. "Polarization-Based Digital Histology of Human Skin Biopsies Assisted by Deep Learning" Photonics 11, no. 2: 185. https://doi.org/10.3390/photonics11020185
APA StyleIvanov, D., Zaharieva, L., Mircheva, V., Troyanova, P., Terziev, I., Ossikovski, R., Novikova, T., & Genova, T. (2024). Polarization-Based Digital Histology of Human Skin Biopsies Assisted by Deep Learning. Photonics, 11(2), 185. https://doi.org/10.3390/photonics11020185