The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre–Gauss LGp0 Laser Beams
Abstract
:1. Introduction
2. LGp0 Beams Subject to an Aberration
- (i)
- The intensity distribution , which can be split into a longitudinal distribution and a transversal distribution in the plane .
- (ii)
- The beam propagation factor of the diffracted LGp0. To determine the factor, we need to determine numerically the longitudinal distribution of the width of the diffracted beam based on the second-order intensity moment [18].
2.1. OKE Aberration
2.2. Spherical Aberration
3. The Rectifed LGp0 Beams
4. Optical Tweezers Enlightened by a Structured LGp0 Beam
4.1. The Optical Trap Enlightened by a Rectified LGp0 Beam
4.2. The Optical Trap Enlightened by an LGp0 Beam Subject to SA
5. Restructuring an LGp0 Beam into a Flat-Top or Optical Bottle Beam
5.1. Transformation of a Radial Laguerre–Gaussian LGp0 Beam into a Flat-Top
5.1.1. Reshaping of Odd Beams: , ,
- (a)
- LG10 beam
- (b)
- LG30 beam
- (c)
- LG50 beam
5.1.2. Reshaping of Even Beams: ,
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fan, T.Y.; Byer, R.L. Diode laser-pumped solid-state lasers. IEEE J. Quantum Electron. 1988, 24, 895–912. [Google Scholar] [CrossRef]
- Koechner, W. Solid-State Laser Engineering, 5th ed.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Hodgson, N.; Weber, H. Laser Resonators and Beam Propagation, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Siegman, A.E. Lasers; University Science Books: Herndon, VA, USA, 1986. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8190. [Google Scholar] [CrossRef]
- Pereira, S.F.; Willemsen, M.B.; Van Exter, M.P.; Woerdman, J.P. Pinning of daisy modes in optically pumped verticel-cavity surface-emitting lasers. Appl. Phys. Lett. 1998, 73, 2239–2241. [Google Scholar] [CrossRef]
- Deng, Q.; Deng, H.; Deppe, D.G. Radiation fields from whispering-gallery modes of oxide-confined vertical-cavity surface emitting lasers. Opt. Lett. 1997, 22, 463–465. [Google Scholar] [CrossRef]
- Chen, Y.F.; Lan, Y.P.; Wang, S.C. Generation of Laguerre-Gaussian modes in fiber-coupled laser diode end-pumped lasers. Appl. Phys. B 2001, 72, 167–170. [Google Scholar] [CrossRef]
- Ishaaya, A.A.; Davidson, N.; Machavariani, G.; Hasman, E.; Friesem, A.A. Efficient selection of High-order Laguerre-Gaussian modes in a Q-switched Nd:YAG laser. IEEE J. Quantum Electron. 2003, 9, 74–82. [Google Scholar] [CrossRef]
- Ishaaya, A.A.; Davidson, N.; Friesem, A.A. Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser. Opt. Express 2005, 13, 4952–4962. [Google Scholar] [CrossRef] [PubMed]
- Rabinovici, R.; Ishaaya, A.A.; Peer, I.; Shimshi, L.; Davidson, N.; Friesem, A.A. Increasing output energy from a passively Q-switched Ar:glass laser. Appl. Opt. 2007, 46, 7426–7431. [Google Scholar] [CrossRef]
- Senatsky, Y.; Bisson, J.F.; Li, J.; Shirakawa, A.; Thirugnansambandam, M.; Ueda, K.I. Laguerre-Gaussian modes selection in diode-pumped solid-state lasers. Opt. Rev. 2012, 19, 201–221. [Google Scholar] [CrossRef]
- Ngcobo, S.; Ait-Ameur, K.; Passilly, N.; Hasnaoui, A.; Forbes, A. Exciting higher-order radial Laguerre-Gaussian modes in a diode-pumped solid-state laser resonator. Appl. Opt. 2013, 52, 2093–2101. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Bencheikh, A.; Ait-Ameur, K. Tailored TEMp0 beams for large size 3-D laser prototyping. Opt. Las. Eng. 2011, 49, 248–251. [Google Scholar] [CrossRef]
- Haddadi, S.; Ait-Ameur, K. Improvement of optical trapping effect by structuring the illuminated laser beam. Optik 2022, 251, 168439. [Google Scholar] [CrossRef]
- Siegman, A.E. New developments in laser resonators. In Optical Resonators; SPIE: Bellingham, WA, USA, 1990; Volume 1224, pp. 2–14. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 6th ed.; Pergamon: Oxford, UK, 1980; Chapter 8. [Google Scholar]
- Hall, D.R.; Jackson, P.E. The Physics and Technology of Laser Resonators; Institute of Physics Publishing: Bristol, UK, 1989; Chapter 9. [Google Scholar]
- Passilly, N.; Martel, G.; Ait-Ameur, K. Beam propagation factor of truncated Laguerre-Gauss beams. J. Mod. Opt. 2004, 51, 2279–2286. [Google Scholar]
- Glaze, J. High energy glass lasers. Opt. Eng. 1976, 15, 136–142. [Google Scholar] [CrossRef]
- Bliss, E.S.; Hunt, J.T.; Renard, P.A.; Sommargren, G.E.; Weaver, H.J. Effects of nonlinear propagation on laser focusing properties. IEEE J. Quantum Electron. 1976, 12, 402–406. [Google Scholar] [CrossRef]
- Khoo, I.C.; Hou, J.Y.; Yan, T.H.; Michael, R.R.; Finn, G.M. Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film. JOSA B 1987, 4, 886–891. [Google Scholar] [CrossRef]
- Marburger, J.H. Self-focusing:theory. Prog. Quantum Electron. 1975, 4, 35–110. [Google Scholar] [CrossRef]
- Simmons, W.W.; Hunt, J.T.; Warren, W.E. Light propagation through large laser systems. IEEE J. Quantum Electron. 1981, 17, 1727–1744. [Google Scholar] [CrossRef]
- Holzrichter, J.F.; Speck, D.R. Laser focusing limitations from nonlinear beam instabilities. J. Appl. Phys. 1976, 47, 2459–2461. [Google Scholar] [CrossRef]
- Kelley, P.L. Self-focusing of optical beams. Phys. Rev. Lett. 1965, 15, 1005–1008. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Fromager, M.; Aït-Ameur, K. About the validity of the parabolic approximation in Kerr lensing effect. Optik 2019, 193, 162986. [Google Scholar] [CrossRef]
- Hermann, J. Beam propagation and optical power limiting with nonlinear media. J. Opt. Soc. Am. B 1984, 1, 729–736. [Google Scholar] [CrossRef]
- Hermann, J. External self-focusing, self-bending and optical limiting with thin non-linear media. Opt. Quantum Electron. 1987, 19, 169–178. [Google Scholar] [CrossRef]
- Hunt, J.T.; Renard, P.A.; Nelson, R.G. Focusing properties of an aberrated laser beam. Appl. Opt. 1976, 15, 1458–1464. [Google Scholar] [CrossRef]
- Alda, J.; Alonso, J.; Bernabeu, E. Characterization of aberrated laser beams. JOSA A 1997, 14, 2737–2747. [Google Scholar] [CrossRef]
- Mezouari, S.; Harvey, A.R. Phase pupil functions for reduction of defocus and spherical aberrations. Opt. Lett. 2003, 28, 771–773. [Google Scholar] [CrossRef]
- Boyd, R.W.; Lukishova, S.G.; Shen, Y.R. Self-Focusing: Past and Present, Fundamentals and Prospects; Springer: Berlin/Heidelberg, Germany, 2009; Volume 114. [Google Scholar]
- Habchi, A.; Harfouche, A.; Hasnaoui, A.; Ait-Ameur, K. A laser weakening the protective capacity of optical limiting devices. Appl. Phys. B 2022, 128, 14. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Fromager, M.; Cagniot, E.; Ait-Ameur, K. Structuring a laser beam subject to optical Kerr effect for improving its focusing properties. Appl. Phys. B 2021, 127, 75. [Google Scholar] [CrossRef]
- Soileau, M.; Williams, W.; Van Stryland, E. Optical power limiter with picosecond response time. IEEE J. Quantum Electron. 1983, 19, 731–735. [Google Scholar] [CrossRef]
- Hermann, J. Simple model for a passive optical power limiter. Opt. Acta 1985, 32, 541–547. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.; Hagan, D.; Soileau, M.; Van Stryland, E. Simple analysis and geometric optimization of a passive optical limiter based on internal self-action. In Materials for Optical Switches, Isolators, and Limiters; SPIE: Bellingham, WA, USA, 1989; Volume 1105, pp. 146–153. [Google Scholar]
- Hermann, J. Self-focusing effects and applications using thin nonlinear media. Int. J. Nonlinear Opt. Phys. Mat. 1992, 1, 541–561. [Google Scholar] [CrossRef]
- Hermann, J.; Wilson, P. Factors affecting optical limiting and scanning with thin nonlinear samples. Int. J. Nonlinear Opt. Phys. Mat. 1993, 2, 613–629. [Google Scholar] [CrossRef]
- Nalwa, H.S. (Ed.) Handbook of Advanced Electronics and Photonics Materials and Devices. In Nonlinear Optical Materials; Academic Press: Cambridge, MA, USA, 2001; Volume 9, Chapter 8. [Google Scholar]
- Vivien, L.; Lançon, P.; Riehl, D.; Hache, F.; Anglaret, E. Carbon nanotubes for optical limiting. Carbon 2002, 40, 1789–1792. [Google Scholar] [CrossRef]
- Gao, Y.; Chang, Q.; Ye, H.; Jiao, W.; Li, Y.; Wang, Y.; Song, Y.; Zhu, D. Size effect of optical limiting in gold nanoparticles. Chem. Phys. 2007, 336, 99–102. [Google Scholar] [CrossRef]
- Stepanov, A.L. Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: A review. Rev. Adv. Mater. Sci. 2011, 27, 115–145. [Google Scholar]
- Dini, D.; Calvete, M.; Hanack, M. Nonlinear materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233. [Google Scholar] [CrossRef] [PubMed]
- Muller, O.; Pichot, V.; Merlat, L.; Spitzer, D. Optical limiting properties of surface functionalized nanodiamonds probed by Z-scan method. Sci. Rep. 2019, 9, 519. [Google Scholar] [CrossRef] [PubMed]
- Francois, L.; Mostafavi, M.; Belloni, J.; Delouis, J.F.; Delaire, J.; Feneyrou, P. Optical limitation induced by gold clusters. 1. Size Effect. J. Phys. Chem. B 2000, 104, 6133–6137. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Ait-Ameur, K. Simple modelling of nonlinear losses induced by Kerr lensing effect. Appl. Phys. B 2021, 127, 100. [Google Scholar] [CrossRef]
- Yoshida, A.; Asakura, T. Propagation and focusing of Gaussian laser beams beyond conventional diffraction limit. Opt. Commun. 1996, 123, 694–704. [Google Scholar] [CrossRef]
- Pu, J.; Zhang, H. Intensity distribution of Gaussian beams focused by a lens with spherical aberration. Opt. Commun. 1998, 151, 331–338. [Google Scholar] [CrossRef]
- Furlan, W.D.; Saavedra, G.; Sylvestre, E.; Martinez-Corral, M. On-axis irradiance for spherically aberrated optical systems with obscured rectangular apertures: A study using the Wigner function. J. Mod. Opt. 1998, 45, 69–77. [Google Scholar] [CrossRef]
- Trappe, N.; Murphy, J.A.; Withington, S. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems. Eur. J. Phys. 2003, 24, 403–412. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Bencheikh, A.; Fromager, M.; Cagniot, E.; AIt-Ameur, K. Creation of a sharper focus by using a rectified TEMp0 beam. Opt. Commun. 2011, 284, 1331–1334, Erratum in Opt. Commun. 2011, 284, 4107. [Google Scholar] [CrossRef]
- Chai, H.S.; Wang, L.G. Improvement of optical trapping effect by using the focused high-order Laguerre-Gaussian beams. Micron 2012, 43, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Ait-Ameur, K.; Hasnaoui, A. Improving the longitudinal and radial forces of optical tweezers: A numerical study. Opt. Commun. 2024, 551, 130033. [Google Scholar] [CrossRef]
- Haddadi, S.; Hasnaoui, A.; Fromager, M.; Louhibi, D.; Harfouche, A.; Cagniot, E.; Ait-Ameur, K. Use of a diaphragm for transforming a LG10 beam into a Flat-Top. Optik 2016, 127, 2207–2211. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Haddadi, S.; Fromager, M.; Louhibi, D.; Harfouche, A.; Cagniot, E.; Ait-Ameur, K. Transformation of a LG10 beam into an optical bottle beam. Las. Phys. 2015, 25, 085004. [Google Scholar] [CrossRef]
- Chaloupska, J.; Meyerhofer, D. Characterization of a tunable single-beam ponderative-optical trap. J. Opt. Soc. Am. B 2000, 17, 713–722. [Google Scholar] [CrossRef]
- Ashkin, A. Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 1978, 40, 729–732. [Google Scholar] [CrossRef]
- Rhodes, D.P.; Lancaster, G.P.; Livesey, J.; McGloin, D.; Arlt, J.; Dholakia, K. Guiding a cold atomic beam along a co-propagating and oblique hollow light guide. Opt. Commun. 2002, 214, 247–254. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, M.; Yin, J. Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow mettalic waveguide. Opt. Express 2005, 13, 8406–8423. [Google Scholar] [CrossRef]
- Dienerowitz, M.; Mazilu, M.; Reece, P.J.; Krauss, T.F.; Dholakia, K. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express 2008, 16, 4991–4999. [Google Scholar] [CrossRef]
- Zhan, Q. Trapping mettalic particles with radial polarization. Opt. Express 2004, 12, 3377–3382. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, L.; Santschi, C.; Martin, O.J. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 2010, 10, 1006–1011. [Google Scholar] [CrossRef]
- Yan, Z.; Pelton, M.; Vigderman, L.; Zubarev, E.R.; Scherer, N.F. Why single-beam optical tweezers trap gold nanowires in three-dimensions. Acs Nano 2013, 7, 8794–8800. [Google Scholar] [CrossRef] [PubMed]
- Rubinsztein-Dunlop, H.; Nieminen, T.A.; Friese, M.E.; Heckenberg, N.R. Optical trapping of absorbing particles. Adv. Quantum Chem. 1998, 30, 469–492. [Google Scholar]
- Lehmuskero, A.; Johansson, P.; Rubinsztein-Dunlop, H.; Tong, L.; Käll, M. Laser trapping of colloidal metal nanoparticles. Acs Nano 2015, 4, 3453–3469. [Google Scholar] [CrossRef] [PubMed]
- Gongjian, Z.; Man, Z.; Yang, Z. Wave front control with SLM and simulation of light wave diffraction. Opt. Express 2018, 26, 33543. [Google Scholar] [CrossRef] [PubMed]
- Jewel, A.R.; Akondi, V.; Vohnsen, B. A direct comparison between a MEMS deformable mirror and a liquid crystal spatial light modulator in signal-based wavefront sensing. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13073. [Google Scholar] [CrossRef]
- Cagniot, E.; Fromager, M.; Godin, T.; Passilly, N.; Brunel, M.; Ait-Ameur, K. Variant of the method of Fox and Li dedicated to intracavity laser beam shaping. JOSA A 2011, 28, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.; Forbes, A.; Naidoo, D. Amplification of higher-order Laguerre-Gaussian modes using a dual-pass MOPA system. Opt. Express 2023, 31, 17408–17423. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R.; Porras, M.A. Comparison between the propagation properties of Bessel-Gauss and generalised Laguerre-Gauss beams. Photonics 2023, 10, 1011. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Kharitonov, S.I.; Fomchenkov, S.A.; Porfirev, A.P. Optical bottle shaping using axicons with amplitude or phase apodization. Photonics 2023, 10, 200. [Google Scholar] [CrossRef]
- Neuman, K.; Block, S. Optical trapping. Rev. Sci. Instrum. 2004, 75, 2787–2809. [Google Scholar] [CrossRef]
- Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24, 156–159. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M. Optical levitation by radiation pressure. Appl. Phys. Lett. 1971, 19, 282–285. [Google Scholar] [CrossRef]
- Harada, Y.; Asakura, T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 1936, 124, 529–541. [Google Scholar] [CrossRef]
- Lang, M.J.; Block, S.M. Resource Letter: LBOT-1: Laser-based optical tweezers. Am. J. Phys. 2003, 71, 201–215. [Google Scholar] [CrossRef]
- Dienerowitz, M.; Mazilu, M.; Dholakia, K. Optical manipulation of nanoparticles: A review. J. Nanophotonics 2008, 2, 021875. [Google Scholar] [CrossRef]
p | 0 | 1 | 2 | 3 |
---|---|---|---|---|
ρ0 | 1.5 W | 2.13 W | 2.58 W | 2.96 W |
p | Values of Ratio ρi/W for the Zeros of the Intensity of the LGp0 Mode | ||
---|---|---|---|
1 | 0.707106 | ||
2 | 0.541195 | 1.306562 | |
3 | 0.455946 | 1.071046 | 1.773407 |
p | αLG (%) | αR (%) | η |
---|---|---|---|
1 | 26.4 | 82.6 | 17 |
2 | 15.6 | 78.5 | 68 |
3 | 11.2 | 76.3 | 172 |
p | Normalised Radius (ρ/W) of the Central Peak of a Pure LGp0 Beam | |
---|---|---|
1 | 0.7 | 1.9 |
2 | 0.53 | 2.4 |
3 | 0.45 | 2.9 |
p | 1 | 2 | 3 |
---|---|---|---|
2.06 | 3.37 | 4.77 |
p | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Central peak (positive) | 100% | 26.4% | 15.6% | 11.1% | 8.6% | 7.1% |
Ring #1 (negative) | 73.6% | 23.5% | 15.3% | 11.5% | 9.24% | |
Ring #3 (negative) | 53.7% | 17.5% | 11.8% | |||
Ring #5 (negative) | 45.7% | |||||
η+ (pure LGp0) | 100% | 26.4% | 75.9% | 30.9% | 70.8% | 33.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aït-Ameur, K. The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre–Gauss LGp0 Laser Beams. Photonics 2024, 11, 217. https://doi.org/10.3390/photonics11030217
Aït-Ameur K. The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre–Gauss LGp0 Laser Beams. Photonics. 2024; 11(3):217. https://doi.org/10.3390/photonics11030217
Chicago/Turabian StyleAït-Ameur, Kamel. 2024. "The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre–Gauss LGp0 Laser Beams" Photonics 11, no. 3: 217. https://doi.org/10.3390/photonics11030217
APA StyleAït-Ameur, K. (2024). The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre–Gauss LGp0 Laser Beams. Photonics, 11(3), 217. https://doi.org/10.3390/photonics11030217