Classifying Raman Spectra of Colon Cells Based on Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Growth
2.2. Raman Spectra
2.3. Spectral Processing and Data Analysis
3. Results and Discussion
- LR: non-regularization type;
- SVM: radial basis function (RBF) kernel, SVM with cost 1.0 and regression loss epsilon 0.1, tolerance 0.001, and maximum 100 iterations;
- kNN: the number of neighbors equal to two, by using an Euclidean metric and weights by distances;
- NN: 30 neurons in the hidden layer, ReLu activation, Adam solver, and 300 maximum iterations.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.wcrf.org/cancer-trends/worldwide-cancer-data (accessed on 1 February 2024).
- Hall, C.; Clarke, L.; Pal, A.; Buchwald, P.; Eglinton, T.; Wakeman, C.; Frizelle, F. A Review of the Role of Carcinoembryonic Antigen in Clinical Practice. Ann. Coloproctol. 2019, 35, 294–305. [Google Scholar] [CrossRef]
- Elumalai, S.; Managó, S.; De Luca, A.C. Raman Microscopy: Progress in Research on Cancer Cell Sensing. Sensors 2020, 20, 5525. [Google Scholar] [CrossRef]
- Hanna, K.; Krzoska, E.; Shaaban, A.M.; Muirhead, D.; Abu-Eid, R.; Speirs, V. Raman spectroscopy: Current applications in breast cancer diagnosis, challenges and future prospects. Br. J. Cancer 2022, 126, 1125–1139. [Google Scholar] [CrossRef]
- Murugappan, S.; Tofail, S.A.M.; Thorat, N.D. Raman Spectroscopy: A Tool for Molecular Fingerprinting of Brain Cancer. ACS Omega 2023, 8, 27845–27861. [Google Scholar] [CrossRef]
- Chen, C.; Hao, J.; Hao, X.; Xu, W.; Xiao, C.; Zhang, J.; Pu, Q.; Liu, L. The accuracy of Raman spectroscopy in the diagnosis of lung cancer: A systematic review and meta-analysis. Transl. Cancer Res. 2021, 10, 3680–3693. [Google Scholar] [CrossRef] [PubMed]
- Bourbousson, M.; Soomro, I.; Baldwin, D.; Notingher, I. Ex vivo Raman spectroscopy mapping of lung tissue: Label-free molecular characterization of nontumorous and cancerous tissues. J. Med. Imaging 2019, 6, 036001. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, Q.; Li, B.; Zhao, X. Raman Spectroscopy: A Novel Technology for Gastric Cancer Diagnosis. Front. Bioeng. Biotechnol. 2022, 10, 856591. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Dai, J.; Chen, Y.; Duan, G.; Liu, Y.; Zhang, H.; Wu, H.; Peng, G. Evaluation of the diagnostic potential of ex vivo Raman spectroscopy in gastric cancers: Fingerprint versus high wavenumber. J. Biomed. Opt. 2016, 21, 105002. [Google Scholar] [CrossRef]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef]
- Morais, C.L.M.; Lima, K.M.G.; Singh, M.; Martin, F.L. Tutorial: Multivariate classification for vibrational spectroscopy in biological samples. Nat. Protoc. 2020, 15, 2143–2162. [Google Scholar] [CrossRef]
- Guo, S.; Popp, J.; Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modelling. Nat. Protoc. 2021, 16, 5426–5459. [Google Scholar] [CrossRef]
- Wang, W.; Shi, B.; He, C.; Wu, S.; Zhu, L.; Jiang, J.; Wang, L.; Lin, L.; Ye, J.; Zhang, H. Euclidean distance-based Raman spectroscopy (EDRS) for the prognosis analysis of gastric cancer: A solution to tumor heterogeneity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 288, 122163. [Google Scholar]
- Demsar, J.; Curk, T.; Erjavec, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Mozina, M.; Polajnar, M.; Toplak, M.; Staric, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Kokabi, M.; Tahir, M.N.; Singh, D.; Javanmard, M. Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis. Biosensors 2023, 13, 884. [Google Scholar] [CrossRef] [PubMed]
- Kalatzis, D.; Spyratou, E.; Karnachoriti, M.; Kouri, M.A.; Orfanoudakis, S.; Koufopoulos, N.; Pouliakis, A.; Danias, N.; Seimenis, I.; Kontos, A.G.; et al. Advanced Raman Spectroscopy Based on Transfer Learning by Using a Convolutional Neural Network for Personalized Colorectal Cancer Diagnosis. Optics 2023, 4, 310–320. [Google Scholar] [CrossRef]
- Yan, H.; Yu, M.; Xia, J.; Zhu, L.; Zhang, T.; Zhu, Z. Tongue squamous cell carcinoma discrimination with Raman spectroscopy and convolutional neural networks. Vib. Spectrosc. 2019, 103, 102938. [Google Scholar] [CrossRef]
- Shuyun, W.; Lin, F.; Pan, C.; Zhang, Q.; Tao, H.; Fan, M.; Xu, L.; Kong, K.V.; Chen, Y.; Lin, D.; et al. Laser tweezer Raman spectroscopy combined with deep neural networks for identification of liver cancer cells. Talanta 2023, 264, 124753. [Google Scholar] [CrossRef] [PubMed]
- Depciuch, J.; Jakubczyk, P.; Paja, W.; Pancerz, K.; Wosiak, A.; Kula-Maximenko, M.; Yaylım, I.; Gültekin, G.I.; Tarhan, N.; Hakan, M.T.; et al. Correlation between human colon cancer specific antigens and Raman spectra. Attempting to use Raman spectroscopy in the determination of tumor markers for colon cancer. Nanomed. Nanotechnol. Biol. Med. 2023, 48, 102657. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Li, S.; Fu, Q.; Wang, P.; Wu, X.; Zhang, Y. Label-free identification of lung cancer cells from blood cells based on surface-enhanced Raman scattering and support vector machine. Optik 2021, 248, 168157. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Li, S.; Wang, D.; Song, Y.; Zhang, S. Raman spectroscopy combined with principal component analysis and k nearest neighbour analysis for non-invasive detection of colon cancer. Laser Phys. 2016, 26, 035702. [Google Scholar] [CrossRef]
- Wang, X.; Xie, F.; Yang, Y.; Zhao, J.; Wu, G.; Wang, S. Rapid Diagnosis of Ductal Carcinoma In Situ and Breast Cancer Based on Raman Spectroscopy of Serum Combined with Convolutional Neural Network. Bioengineering 2023, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Teh, S.K.; Zheng, W.; Ho, K.Y.; Teh, M.; Yeoh, K.G.; Huang, Z. Near-infrared Raman spectroscopy for early diagnosis and typing of adenocarcinoma in the stomach. Br. J. Surg. 2010, 97, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Arévalo, L.A.; Antonova, O.; O’Brien, S.A.; Singh, G.P.; Seifert, A. Detection of Alzheimer’s by machine learning-assisted vibrational spectroscopy in human cerebrospinal fluid. J. Phys. Conf. Ser. 2022, 2407, 012026. [Google Scholar] [CrossRef]
- Lasalvia, M.; Gallo, C.; Capozzi, V.; Perna, G. Discrimination of Healthy and Cancerous Colon Cells Based on FTIR Spectroscopy and Machine Learning Algorithms. Appl. Sci. 2023, 13, 10325. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph—Optical Spectroscopy Software, Version 1.2.16; Spectragryph: Oberstdorf, Germany, 2023. Available online: http://www.effemm2.de/spectragryph/(accessed on 1 February 2024).
- Perna, G.; Lasalvia, M.; Capozzi, V. Raman microspectroscopy discrimination of single human keratinocytes exposed at low dose of pesticide. J. Mol. Struct. 2012, 1010, 123–129. [Google Scholar] [CrossRef]
- Beton, K.; Brożek-Płuska, B. Biochemistry and Nanomechanical Properties of Human Colon Cells upon Simvastatin, Lovastatin, and Mevastatin Supplementations: Raman Imaging and AFM Studies. J. Phys. Chem. B 2022, 126, 7088–7103. [Google Scholar] [CrossRef] [PubMed]
- Brozek-Pluska, B.; Beton, K. Oxidative stress induced by tBHP in human normal colon cells by label free Raman spectroscopy and imaging. The protective role of natural antioxidants in the form of β-carotene. RSC Adv. 2021, 11, 16419–16434. [Google Scholar] [CrossRef]
- Brozek-Pluska, B.; Jarota, A.; Kania, R.; Abramczyk, H. Zinc Phthalocyanine Photochemistry by Raman Imaging, Fluorescence Spectroscopy and Femtosecond Spectroscopy in Normal and Cancerous Human Colon Tissues and Single Cells. Molecules 2020, 25, 2688. [Google Scholar] [CrossRef]
- Talari, A.C.S.; Movasaghi, Z.; Rehman, S.; ur Rehman, I. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2015, 50, 46–111. [Google Scholar] [CrossRef]
- Chowdary, M.V.P.; Kumar, K.K.; Thakur, K.; Anand, A.; Kurien, J.; Krishna, C.M.; Mathew, S. Discrimination of Normal and Malignant Mucosal Tissues of the Colon by Raman Spectroscopy. Photomed. Laser Surg. 2007, 25, 269–274. [Google Scholar] [PubMed]
- Fousková, M.; Vališ, J.; Synytsya, A.; Habartová, L.; Petrtýl, J.; Petruželka, L.; Setnička, V. In vivo Raman spectroscopy in the diagnostics of colon cancer. Analyst 2023, 148, 2518–2526. [Google Scholar] [CrossRef] [PubMed]
- Brozek-Pluska, B. Statistics assisted analysis of Raman spectra and imaging of human colon cell lines—Label free, spectroscopic diagnostics of colorectal cancer. J. Mol. Struct. 2020, 1218, 128524. [Google Scholar] [CrossRef]
- Dong, L.; Sun, X.; Chao, Z.; Zhang, S.; Zheng, J.; Gurung, R.; Du, J.; Shi, J.; Xu, Y.; Zhang, Y.; et al. Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2014, 122, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Kaznowska, E.; Depciuch, J.; Szmuc, K.; Cebulski, J. Use of FTIR spectroscopy and PCA-LDC analysis to identify cancerous lesions within the human colon. J. Pharm. Biomed. Anal. 2017, 134, 259–268. [Google Scholar]
- Fang, J.; Swain, A.; Unni, R.; Zheng, Y. Decoding Optical Data with Machine Learning. Laser Photon Rev. 2021, 15, 2000422. [Google Scholar]
- Karnachoriti, M.; Stathopoulos, I.; Kouri, M.; Spyratou, E.; Orfanoudakis, S.; Lykidis, D.; Lambropoulou, M.; Danias, N.; Arkadopoulos, N.; Efstathopoulos, E.; et al. Biochemical differentiation between cancerous and normal human colorectal tissues by micro-Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 299, 122852. [Google Scholar] [CrossRef]
- Blake, N.; Gaifulina, R.; Griffin, L.D.; Bell, I.M.; Rodriguez-Justo, M.; Thomas, G.M.H. Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer. Cancers 2023, 15, 1720. [Google Scholar]
- Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
Spectral Position (cm−1) | Assignment |
---|---|
1004 | C-C symmetric ring breathing of Phenylalanine (p.) |
1031 | C-H in plane bending of Phenylalanine (p.) |
1064 | C-C stretching (l.) |
1088 | C-N stretching (p.) and C-C stretching (l.) |
1097 | Symmetric PO2− stretching of DNA (n.a.) |
1129 | C-N stretching (p.), C-O stretching (c.), C-C stretching (l.) |
1174 | C-H bending aminoacids (p.) |
1210 | C-C6H5 stretching aminoacids (p.) |
1250 | Amide III (p.) |
1272 | Amide III (p.) |
1326 | CH3CH2 wagging mode in purine bases of DNA (n.a.) |
1340 | Ring breathing modes of DNA bases (n.a.) |
1406 | (C=O)O− stretching of aminoacids (p.) |
1450 | CH2 bending modes (p., l.) |
1580 | Ring breathing modes in DNA bases (n.a.) |
1657 | Amide I (p.) |
Method | Accuracy Nucleus (%) | Accuracy Cytoplasm (%) | Sensitivity Nucleus (%) | Sensitivity Cytoplasm (%) | Specificity Nucleus (%) | Specificity Cytoplasm (%) |
---|---|---|---|---|---|---|
kNN | 97.1 (95.7, 97.9) | 95.5 (94.0, 96.3) | 100.0 (97.1, 100.0) | 95.5 (94.1, 97.1) | 94.3 (94.3, 97.1) | 93.9 (90.9, 97.0) |
LR | 95.7 (95.7, 97.1) | 97.0 (97.0, 97.8) | 97.10 (95.7, 97.1) | 97.1 (97.1, 98.6) | 97.1 (94.3, 97.1) | 97.0 (97.0, 97.0) |
NN | 95.7 (94.2, 97.1) | 97.0 (97.0, 98.5) | 97.1 (94.1, 100.0) | 97.1 (97.1, 100.0) | 94.3 (91.4, 95.7) | 97.0 (97.0, 97.0) |
SVM | 97.1 (95.7, 97.1) | 97.0 (95.5, 97.8) | 97.1 (97.1, 100.0) | 97.1 (97.1, 97.1) | 94.3 (94.3, 97.1) | 97.0 (93.9, 100.0) |
Method | AUC Nucleus | AUC Cytoplasm | Accuracy Nucleus (%) | Accuracy Cytoplasm (%) | Sensitivity Nucleus (%) | Sensitivity Cytoplasm (%) | Specificity Nucleus (%) | Specificity Cytoplasm (%) |
---|---|---|---|---|---|---|---|---|
kNN | 1.00 (0.97, 1.00) | 1.00 (0.96, 1.00) | 100.0 (96.6, 100.0) | 96.4 (92.9, 96.4) | 100.0 (100.0, 100.0) | 100.0 (92.9, 100.0) | 93.3 (93.3, 100.0) | 92.9 (92.9, 100.0) |
LR | 1.00 (0.99, 1.00) | 1.00 (0.99, 1.00) | 96.6 (93.1, 96.6) | 96.4 (94.7, 100.0) | 92.9 (89.3, 100.0) | 100.0 (92.9, 100.0) | 100.0 (93.3, 100.0)9 | 100.0 (92.9, 100.0) |
NN | 0.99 (0.99, 1.00) | 1.00 (0.99, 1.00) | 93.1 (89.7, 96.6) | 100.0 (96.4, 100.0) | 92.9 (85.7, 100.0) | 100.0 (96.5, 100.0) | 93.3 (86.7, 96.7) | 100.0 (92.9, 100.0) |
SVM | 1.00 (0.99, 1.00) | 1.00 (0.99, 1.00) | 96.6 (93.1, 100.0) | 96.4 (92.9, 100.0) | 100.0 (92.9, 100.0) | 100.0 (92.9, 100.0) | 100.0 (93.3, 100.0) | 100.0 (92.9, 100.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasalvia, M.; Gallo, C.; Capozzi, V.; Perna, G. Classifying Raman Spectra of Colon Cells Based on Machine Learning Algorithms. Photonics 2024, 11, 275. https://doi.org/10.3390/photonics11030275
Lasalvia M, Gallo C, Capozzi V, Perna G. Classifying Raman Spectra of Colon Cells Based on Machine Learning Algorithms. Photonics. 2024; 11(3):275. https://doi.org/10.3390/photonics11030275
Chicago/Turabian StyleLasalvia, Maria, Crescenzio Gallo, Vito Capozzi, and Giuseppe Perna. 2024. "Classifying Raman Spectra of Colon Cells Based on Machine Learning Algorithms" Photonics 11, no. 3: 275. https://doi.org/10.3390/photonics11030275
APA StyleLasalvia, M., Gallo, C., Capozzi, V., & Perna, G. (2024). Classifying Raman Spectra of Colon Cells Based on Machine Learning Algorithms. Photonics, 11(3), 275. https://doi.org/10.3390/photonics11030275