Tunable Near and Mid-Infrared (1.3–5 µm) Picosecond Pulsed Optical Vortex Parametric Oscillator
Abstract
:1. Introduction
2. Experimental Method
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical Vortices 30 Years on: OAM Manipulation from Topological Charge to Multiple Singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Xie, Z.; Yuan, X. Multidimensional Multiplexing Holography Based on Optical Orbital Angular Momentum Lattice Multiplexing. Adv. Photon. Nexus 2024, 3, 016005. [Google Scholar] [CrossRef]
- Reddy, A.N.K.; Anand, V.; Khonina, S.N.; Podlipnov, V.V.; Juodkazis, S. Robust Demultiplexing of Distinct Orbital Angular Momentum Infrared Vortex Beams into Different Spatial Geometry Over a Broad Spectral Range. IEEE Access 2021, 9, 143341–143348. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, Y.; Wang, J.; Lu, Y.; Zhang, J.; Fan, J.; Hu, M. Spatiotemporal Optical Vortices Generation in the Green and Ultraviolet via Frequency Upconversion [Invited]. Chin. Opt. Lett. 2023, 21, 080004. [Google Scholar] [CrossRef]
- Ueno, Y.; Toda, Y.; Adachi, S.; Morita, R.; Tawara, T. Coherent Transfer of Orbital Angular Momentum to Excitons by Optical Four-Wave Mixing. Opt. Express 2009, 17, 20567–20574. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, K.; Toda, Y.; Yamane, K.; Morita, R. Orbital Angular Momentum Spectral Dynamics of GaN Excitons Excited by Optical Vortices. Jpn. J. Appl. Phys. 2013, 52, 08JL08. [Google Scholar] [CrossRef]
- Nagali, E.; Sciarrino, F.; De Martini, F.; Marrucci, L.; Piccirillo, B.; Karimi, E.; Santamato, E. Quantum Information Transfer from Spin to Orbital Angular Momentum of Photons. Phys. Rev. Lett. 2009, 103, 013601. [Google Scholar] [CrossRef]
- Leach, J.; Padgett, M.J.; Barnett, S.M.; Franke-Arnold, S.; Courtial, J. Measuring the Orbital Angular Momentum of a Single Photon. Phys. Rev. Lett. 2002, 88, 257901. [Google Scholar] [CrossRef]
- Kapale, K.T.; Dowling, J.P. Vortex Phase Qubit: Generating Arbitrary, Counterrotating, Coherent Superpositions in Bose-Einstein Condensates via Optical Angular Momentum Beams. Phys. Rev. Lett. 2005, 95, 173601. [Google Scholar] [CrossRef]
- Zeng, J.; Liang, C.; Wang, H.; Wang, F.; Zhao, C.; Gbur, G.; Cai, Y. Partially Coherent Radially Polarized Fractional Vortex Beam. Opt. Express 2020, 28, 11493–11513. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.H.; Yuan, X.-C.; Lin, J.; Peng, X.; Niu, H.B. Fractional Optical Vortex Beam Induced Rotation of Particles. Opt. Express OE 2005, 13, 7726–7731. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, K.; Miyamoto, K.; Aoki, N.; Morita, R.; Omatsu, T. Using Optical Vortex to Control the Chirality of Twisted Metal Nanostructures. Nano Lett. 2012, 12, 3645–3649. [Google Scholar] [CrossRef] [PubMed]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental Verification of a Negative Index of Refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Dholakia, K.; Simpson, N.B.; Padgett, M.J.; Allen, L. Second-Harmonic Generation and the Orbital Angular Momentum of Light. Phys. Rev. A 1996, 54, R3742–R3745. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Z.-Y.; Ding, D.-S.; Shi, B.-S. Sum Frequency Generation with Two Orbital Angular Momentum Carrying Laser Beams. J. Opt. Soc. Am. B 2015, 32, 407–411. [Google Scholar] [CrossRef]
- Rao, A.S.; Miyamoto, K.; Omatsu, T. Direct Generation of Vortex Lattice Modes from an Intracavity Frequency Doubled Pr:YLF Laser. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 9–14 May 2021. p. STh1B.2. [Google Scholar] [CrossRef]
- Niu, S.; Wang, S.; Ababaike, M.; Yusufu, T.; Miyamoto, K.; Omatsu, T. Tunable Near- and Mid-Infrared (1.36–1.63 Μm and 3.07–4.81 Μm) Optical Vortex Laser Source. Laser Phys. Lett. 2020, 17, 045402. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, J.; Duan, Y.; Zhang, J.; Zhang, Y.; Xu, C.; Wang, H.; Fan, D. Efficient 1.7 Μm Light Source Based on KTA-OPO Derived by Nd:YVO4 Self-Raman Laser. Opt. Lett. 2018, 43, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Abulikemu, A.; Yakufu, S.; Zhou, Y.X.; Yusufu, T. Mid-Infrared Idler-Resonant Optical Vortex Parametric Oscillator Based on MgO:PPLN. Opt. Laser Technol. 2024, 171, 110341. [Google Scholar] [CrossRef]
- Zhou, Y.; Yusufu, T.; Ma, Y.; Omatsu, T. Generation of Tunable, Non-Integer OAM States from an Optical Parametric Oscillator. Appl. Phys. Lett. 2023, 122, 121106. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.; Li, Z.; Zhang, G.; Zhu, H. Recent Progress in Nonlinear Frequency Conversion of Optical Vortex Lasers. Front. Phys. 2022, 10, 865029. [Google Scholar] [CrossRef]
- Baumgartner, R.; Byer, R. Optical Parametric Amplification. IEEE J. Quantum Electron. 1979, 15, 432–444. [Google Scholar] [CrossRef]
- Lee, A.J.; Omatsu, T.; Pask, H.M. Direct Generation of a First-Stokes Vortex Laser Beam from a Self-Raman Laser. Opt. Express 2013, 21, 12401–12409. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ning, J.; Chen, Y.; Lv, X.; Zhao, G.; Xu, P.; Zhu, S. Continuous-Wave Operation of a Tandem Optical Parametric Oscillator up to 5.19 Μm Based on Periodically Poled LiNbO3. Opt. Lett. 2024, 49, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Ababaike, M.; Wang, S.; Aierken, P.; Omatsu, T.; Yusufu, T. Near and Mid-Infrared Optical Vortex Parametric Oscillator Based on KTA. Sci. Rep. 2021, 11, 8013. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.S.; Yadav, D.; Samanta, G.K. Nonlinear Frequency Conversion of 3D Optical Bottle Beams Generated Using a Single Axicon. Opt. Lett. 2021, 46, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Y.; Wang, C. Generation and Expansion of Laguerre–Gaussian Beams. J. Opt. 2022, 51, 910–926. [Google Scholar] [CrossRef]
- Fang, X.; Yang, G.; Wei, D.; Wei, D.; Ni, R.; Ji, W.; Zhang, Y.; Hu, X.; Hu, W.; Lu, Y.Q.; et al. Coupled Orbital Angular Momentum Conversions in a Quasi-Periodically Poled LiTaO3 Crystal. Opt. Lett. 2016, 41, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit Free-Space Data Transmission Employing Orbital Angular Momentum Multiplexing. Nat. Photon. 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Fang, X.; Yang, H.; Yao, W.; Wang, T.; Zhang, Y.; Gu, M.; Xiao, M. High-Dimensional Orbital Angular Momentum Multiplexing Nonlinear Holography. Adv. Photon. 2021, 3, 015001. [Google Scholar] [CrossRef]
- Agrell, E.; Karlsson, M.; Chraplyvy, A.R.; Richardson, D.J.; Krummrich, P.M.; Winzer, P.; Roberts, K.; Fischer, J.K.; Savory, S.J.; Eggleton, B.J.; et al. Roadmap of Optical Communications. J. Opt. 2016, 18, 063002. [Google Scholar] [CrossRef]
- Ren, H.; Li, X.; Zhang, Q.; Gu, M. On-Chip Noninterference Angular Momentum Multiplexing of Broadband Light. Science 2016, 352, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim-Zadeh, M.; Sorokina, I.T. (Eds.) Mid-Infrared Coherent Sources and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Li, S.-M.; Kong, L.-J.; Ren, Z.-C.; Li, Y.; Tu, C.; Wang, H.-T. Managing Orbital Angular Momentum in Second-Harmonic Generation. Phys. Rev. A 2013, 88, 035801. [Google Scholar] [CrossRef]
- Patton, B.R.; Burke, D.; Owald, D.; Gould, T.J.; Bewersdorf, J.; Booth, M.J. Three-Dimensional STED Microscopy of Aberrating Tissue Using Dual Adaptive Optics. Opt. Express 2016, 24, 8862–8876. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, K.; Takahashi, F.; Takizawa, S.; Tokizane, Y.; Miyamoto, K.; Morita, R.; Omatsu, T. Transfer of Light Helicity to Nanostructures. Phys. Rev. Lett. 2013, 110, 143603. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, F.; Miyamoto, K.; Hidai, H.; Yamane, K.; Morita, R.; Omatsu, T. Picosecond Optical Vortex Pulse Illumination Forms a Monocrystalline Silicon Needle. Sci. Rep. 2016, 6, 21738. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kumar, S.C.; Samanta, G.K.; Ebrahim-Zadeh, M. Orbital Angular Momentum Exchange in a Picosecond Optical Parametric Oscillator. Opt. Lett. 2018, 43, 3606–3609. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kumar, S.C.; Samanta, G.K.; Ebrahim-Zadeh, M. Multi-Structured-Beam Optical Parametric Oscillator. Opt. Express 2020, 28, 21650–21658. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kumar, S.C.; Samanta, G.K.; Ebrahim-Zadeh, M. Tunable Vortex Beam Generation Using an Optical Parametric Oscillator with an Antiresonant-Ring Interferometer. Opt. Lett. 2021, 46, 3235–3238. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, S.C.; Samanta, G.K.; Ebrahim-Zadeh, M. Tunable, High-Power, High-Order Optical Vortex Beam Generation in the Mid-Infrared. Opt. Express 2022, 30, 1195–1204. [Google Scholar] [CrossRef]
- Jashaner, D.; Zhou, Y.; Yusufu, T. Widely-Tunable Mid-Infrared (2.6–5 μm) Picosecond Vortex Laser. Appl. Phys. Express 2022, 15, 102004. [Google Scholar] [CrossRef]
- Vaity, P.; Banerji, J.; Singh, R.P. Measuring the Topological Charge of an Optical Vortex by Using a Tilted Convex Lens. Phys. Lett. A 2013, 377, 1154–1156. [Google Scholar] [CrossRef]
- Zavadilová, A.; Kubeček, V.; Diels, J.-C.; Šulc, J. Dual Pulse Operation of 1.5 um Picosecond Intracavity Synchronously Pumped Optical Parametric Oscillator. In Proceedings of the 7th International Conference on Photonics, Devices, and Systems V, Prague, Czech Republic, 24–26 August 2011; SPIE: Bellingham, WA, USA, 2011; Volume 8306, pp. 317–322. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aihemaiti, M.; Sulaiman, D.; Jashaner, D.; Zhou, Y.; Yang, X.; Li, Z.; Muhutijiang, B.; Yusufu, T. Tunable Near and Mid-Infrared (1.3–5 µm) Picosecond Pulsed Optical Vortex Parametric Oscillator. Photonics 2024, 11, 319. https://doi.org/10.3390/photonics11040319
Aihemaiti M, Sulaiman D, Jashaner D, Zhou Y, Yang X, Li Z, Muhutijiang B, Yusufu T. Tunable Near and Mid-Infrared (1.3–5 µm) Picosecond Pulsed Optical Vortex Parametric Oscillator. Photonics. 2024; 11(4):319. https://doi.org/10.3390/photonics11040319
Chicago/Turabian StyleAihemaiti, Mailikeguli, Dulikun Sulaiman, Dana Jashaner, Yuxia Zhou, Xining Yang, Zhaoxue Li, Bilali Muhutijiang, and Taximaiti Yusufu. 2024. "Tunable Near and Mid-Infrared (1.3–5 µm) Picosecond Pulsed Optical Vortex Parametric Oscillator" Photonics 11, no. 4: 319. https://doi.org/10.3390/photonics11040319
APA StyleAihemaiti, M., Sulaiman, D., Jashaner, D., Zhou, Y., Yang, X., Li, Z., Muhutijiang, B., & Yusufu, T. (2024). Tunable Near and Mid-Infrared (1.3–5 µm) Picosecond Pulsed Optical Vortex Parametric Oscillator. Photonics, 11(4), 319. https://doi.org/10.3390/photonics11040319