On-Chip Supercontinuum Generation Pumped by Short Wavelength Fiber Lasers
Abstract
:1. Introduction
2. Si and SiN
3. Al2O3 and AlN
4. TeO2
5. Ta2O5
6. TiO2
7. Chalcogenide
8. LiNbO3
9. Opportunities and Challenging
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudley, J.M.; Tayloe, J.R. Supercontinuum Generation in Optical Fibers; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Yu, Y.; Gai, X.; Wang, T.; Ma, P.; Wang, R.; Yang, Z.; Choi, D.Y.; Madden, S.J.; Luther-Davies, B. Mid-infrared supercontinuum generation in chalcogenides. Opt. Mater. Express 2013, 3, 1075–1086. [Google Scholar] [CrossRef]
- Fang, Y.; Bao, C.; Li, S.; Wang, Z.; Geng, W.; Wang, Y.; Han, X.; Liang, J.; Zhang, W.; Pan, Z.; et al. Recent Progress of Supercontinuum Generation in Nanophotonic Waveguides. Laser Photonics Rev. 2023, 27, 2200205. [Google Scholar] [CrossRef]
- Petersen, C.R.; Moller, U.; Kubat, I.; Zhou, B.; Dupont, S.; Ramsay, J.; Benson, T.; Sujecki, S.; Abdel-Moneim, N.; Tang, Z.; et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 2014, 8, 830–834. [Google Scholar] [CrossRef]
- Yu, Y.; Gai, X.; Ma, P.; Choi, D.Y.; Yang, Z.; Wang, R.; Debbarma, S.; Madden, S.J.; Luther-Davies, B. A stable, broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photonics Rev. 2014, 8, 792–798. [Google Scholar] [CrossRef]
- Xia, K.; Yang, Z.; Zhao, P.; Yang, P.; Xu, P.; Xu, L.; Peng, X.; Zhang, W.; Dai, S.; Wang, R.; et al. Supercontinuum generation in As2S3 chalcogenide waveguide pumped by all-fiber structured dual-femtosecond solitons. Opt. Express 2023, 31, 29440–29451. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Yang, Z.; Kang, Z.; Yang, P.; Zhang, W.; Wang, R.; Xu, P. Nanophotonic chalcogenide waveguides for supercontinuum generation pumped at 1550 nm. Infrared Phys. Technol. 2024. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, B.; Wang, X.; Pan, Z.; Liu, Z.; Zhang, P.; Shen, X.; Nie, Q.; Dai, S.; Wang, R. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev. 2017, 11, 1700005. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y.; Qiu, C.; Guo, X.; Lu, S. Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications. Adv. Mater. Technol. 2020, 5, 1901153. [Google Scholar] [CrossRef]
- Yao, S.; Han, H.; Jiang, S.; Xiang, B. Design, simulation, and analysis of optical microring resonators in lithium tantalate on insulator. Crystals 2021, 11, 480. [Google Scholar] [CrossRef]
- Kim, D.S.; Yoon, S.G.; Jang, G.E.; Suh, S.J.; Kim, H.; Yoon, D.H. Refractive index properties of SiN thin films and fabrication of SiN optical waveguide. J. Electroceramics 2006, 17, 315–318. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Seifouri, M.; Olyaee, S. Numerical Investigation and Design of Optical On-Chip Waveguide with Engineered Dispersion for Generation of Supercontinuum-Based Frequency Combs. Silicon 2023, 15, 7441–7452. [Google Scholar] [CrossRef]
- Porcel, M.A.; Schepers, F.; Epping, J.P.; Hellwig, T.; Hoekman, M.; Heideman, R.G.; Boller, K.J. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Opt. Express 2017, 25, 1542–1554. [Google Scholar] [CrossRef]
- Singh, N.; Xin, M.; Vermeulen, D.; Shtyrkova, K.; Li, N.; Callahan, P.T.; Magden, E.S.; Ruocco, A. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm. Light Sci. Appl. 2018, 7, 17131. [Google Scholar] [CrossRef]
- Bao, C.; Yan, Y.; Zhang, L.; Yue, Y.; Ahmed, N.; Agarwal, A.M.; Kimerling, L.C.; Michel, J.; Willner, A.E. Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. J. Opt. Soc. Am. B 2015, 32, 26–30. [Google Scholar] [CrossRef]
- Sato, R.; Kou, R.; Yamamoto, N.; Atsumi, Y.; Cong, G.; Murai, T.; Maegami, Y.; Ishizawa, A.; Yamada, K.; Kita, T. Supercontinuum Generation in Si-SiO2-Si Horizontal Slot Waveguide Fabricated by µ-Transfer Printing. In Technical Digest Series, Proceedings of the CLEO: Applications and Technology 2023, San Jose, CA, USA, 7–12 May 2023; paper JTu2A.92; Optica Publishing Group: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Ahmad, H.; Karim, M.R.; Rahman, B.M.A. Dispersion-engineered silicon nitride waveguides for mid-infrared supercontinuum generation covering the wavelength range 0.8–6.5 μm. Laser Phys. 2019, 29, 025301. [Google Scholar] [CrossRef]
- Guo, H.; Herkommer, C.; Billat, A.; Grassani, D.; Zhang, C.; Pfeiffer, T.J. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics 2018, 12, 330–335. [Google Scholar] [CrossRef]
- Carlson, D.R.; Hickstein, D.D.; Lind, A.; Droste, S.; Westly, D.; Nader, N.; Coddington, I. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett. 2017, 42, 2314–2317. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.; Shafiq, T.; Siddique, M.A.; Faisal, M. Suspended core SiN channel waveguide for broadband supercontinuum generation. In Proceedings of the IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, 22–24 December 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Martyshkin, D.; Fedorov, V.; Kesterson, T.; Vasilyev, S.; Guo, H.; Liu, J.; Weng, W. Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide. Opt. Mater. Express 2019, 9, 2553–2559. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Q.; Yue, Y.; Yan, Y.; Beausoleil, R.G.; Willner, A.E. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express 2012, 20, 1685–1690. [Google Scholar] [CrossRef]
- Kuyken, B.; Liu, X.; Osgood, R.M.; Baets, B.; Roelkens, G. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt. Express 2011, 19, 20172–20181. [Google Scholar] [CrossRef]
- Kuyken, B.; Ideguchi, T.; Holzner, S.; Yan, M.; Hansch, T.W.; Campenhout, J.V.; Verheyen, P.; Coen, S.; Leo, F. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 2015, 6, 6310. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Chen, M.K.; Yang, C.E.; Lee, J.; Yin, S.; Ruffin, P.; Edwards, E.; Brantley, C.; Luo, C. Broadband IR supercontinuum generation using single crystal sapphire fibers. Opt. Express 2008, 16, 4085–4093. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, J.; Zhou, H.; Deng, G.; Zhou, S. Comparison of supercontinuum generation in bulk sapphire and femtosecond-laser-inscribed waveguides. Opt. Laser Technol. 2023, 158, 108908. [Google Scholar] [CrossRef]
- Hickstein, D.D.; Jung, H.; Carlson, D.R.; Lind, A.; Coddington, I.; Srinivasan, K.; Ycas, G.G.; Cole, D.C.; Kowligy, A.; Fredrick, C.; et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Phys. Rev. Appl. 2017, 8, 014025. [Google Scholar] [CrossRef]
- Lu, J.; Liu, X.; Bruch, A.W.; Zhang, L.; Wang, J.; Yan, J.; Tang, H.X. Ultraviolet to mid-infrared supercontinuum generation in single-crystalline aluminum nitride waveguides. Opt. Lett. 2020, 45, 4499–4502. [Google Scholar] [CrossRef]
- Shen, S.; Jha, A.; Liu, X.; Naftaly, M.; Bindra, K.; Henry, J.B.; Ajoy, K.K. Tellurite glasses for broadband amplifiers and integrated optics. J. Am. Ceram. Soc. 2002, 85, 1391–1395. [Google Scholar] [CrossRef]
- Kim, S.H.; Yoko, T.; Sakka, S. Linear and nonlinear optical properties of TeO2 glass. J. Am. Ceram. Soc. 1993, 76, 2486–2490. [Google Scholar] [CrossRef]
- Kim, S.H.; Yoko, T. Nonlinear Optical Properties of TeO2-Based Glasses: MOx-TeO2 (M= Sc, Ti, V, Nb, Mo, Ta, and W) Binary Glasses. J. Am. Ceram. Soc. 1995, 78, 1061–1065. [Google Scholar] [CrossRef]
- Madden, S.J.; Vu, K.T. Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics. Opt. Express 2009, 17, 17645–17651. [Google Scholar] [CrossRef]
- Singh, N.; Mbonde, H.M.; Frankis, H.C.; Erich, I.; Bradley, J.D.B.; Franz, X.K. Nonlinear silicon photonics on CMOS-compatible tellurium oxide. Photonics Res. 2020, 8, 1904–1909. [Google Scholar] [CrossRef]
- Frankis, H.C.; Kiani, K.M.; Bonneville, D.B.; Zhang, C.; Norris, S.; Mateman, R.; Leinse, A.; Bassim, N.D.; Knights, A.P.; Bradley, J.D.B. Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits. Opt. Express 2019, 27, 12529–12540. [Google Scholar] [CrossRef]
- Mbonde, H.M.; Singh, N.; Frare, B.L.S.; Sinobad, M.; Ahmadi, P.T.; Hashemi, B.; Bonneville, D.B.; Mascher, P.; Kaertner, F.X.; Bradley, J.D.B. Octave-spanning supercontinuum generation in a CMOS-compatible thin Si3N4 waveguide coated with highly nonlinear TeO2. arXiv 2023, arXiv:2309.08318. [Google Scholar] [CrossRef]
- Fan, R.; Wu, C.L.; Lin, Y.Y.; Liu, C.Y.; Hwang, P.S.; Liu, C.W.; Qian, J.; Shin, M.H.; Huang, Y.J.; Chiu, Y.J.; et al. Visible to near-infrared octave spanning supercontinuum generation in tantalum pentoxide (Ta2O5) air-cladding waveguide. Opt. Lett. 2019, 44, 1512–1515. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Lin, Y.Y.; Chang, L.; Boes, A.; Bowers, J.; Liu, J.W.; Lin, C.H.; Wang, T.K.; Qiao, J.; Kuo, H.C.; et al. Higher order mode supercontinuum generation in tantalum pentoxide Ta2O5 channel waveguide. Sci. Rep. 2021, 11, 7978. [Google Scholar] [CrossRef] [PubMed]
- Belt, M.; Davenport, M.L.; Bowers, J.E.; Blumenthal, D.J. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica 2017, 4, 532–536. [Google Scholar] [CrossRef]
- Jung, H.; Yu, S.P.; Carlson, D.R.; Drake, T.E.; Briles, T.C.; Papp, S.B. Tantala Kerr nonlinear integrated photonics. Optica 2021, 8, 811–817. [Google Scholar] [CrossRef]
- Rabiei, P.; Rao, A.; Chiles, J.; Ma, J.; Fathpour, S. Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates. Opt. Lett. 2014, 39, 5379–5382. [Google Scholar] [CrossRef] [PubMed]
- Sierra, J.H.; Rangel, R.C.; Samad, R.E.; Vieira, N.D.; Alayo, M.I.; Carvalho, D.O. Low-loss pedestal Ta2O5 nonlinear optical waveguides. Opt. Express 2019, 27, 37516–37521. [Google Scholar] [CrossRef]
- Lamee, K.F.; Carlson, D.R.; Newman, Z.L.; Yu, S.P.; Papp, S.B. Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560 nm. Opt. Lett. 2020, 45, 4192–4195. [Google Scholar] [CrossRef]
- Black, J.A.; Streater, R.; Lamee, K.F.; Carlson, D.R.; Yu, S.P.; Papp, S.B. Group-velocity-dispersion engineering of tantala integrated photonics. Opt. Lett. 2021, 46, 817–820. [Google Scholar] [CrossRef]
- Woods, J.R.C.; Daykin, J.; Tong, A.S.K.; Lacava, C.; Petropoulos, P.; Tropper, A.C.; Horak, P.; Wilkinson, J.S.; Apostolopoulos, V. Supercontinuum generation in tantalum pentoxide waveguides for pump wavelengths in the 900 nm to 1500 nm spectral region. Opt. Express 2020, 28, 32173–32183. [Google Scholar] [CrossRef] [PubMed]
- Jafari, Z.; Wang, J.; Guo, Y.; Yang, M.; Zarifkar, A.; Liu, H.; Li, G.; Zhang, L. Efficient supercontinuum generation enabled by dispersion engineering in a dual-core waveguide. Opt. Commun. 2020, 457, 124664. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, J.; Cheng, Y.; Mei, C.; Lai, J.; Zhou, X.; Wu, Q.; Yan, B.; Wang, K.; Yu, C.; et al. Highly coheren mid-infrared supercontinuum generation in a strip titanium dioxide waveguide with three zero-dispersion wavelengths. Opt. Eng. 2022, 61, 117104. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, J.; Jhon, Y.M.; Lee, S.; Park, N. Effect of index contrasts in the wide spectral range control of slot waveguide dispersion. Opt. Express 2012, 20, 13189–13194. [Google Scholar] [CrossRef] [PubMed]
- Hammani, K.; Markey, L.; Lamy, M.; Kibler, B.; Arocas, J.; Fatome, J.; Dereux, A.; Weeber, J.C.; Finot, C. Octave Spanning supercontinuum in Titanium Doixide Waveguides. Appl. Sci. 2018, 8, 543. [Google Scholar] [CrossRef]
- Evans, C.C.; Shtyrkova, K.; Bradley, J.D.B.; Reshef, O.; Ippen, E.; Mazur, E. Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths. Opt. Express 2013, 21, 18582–18591. [Google Scholar] [CrossRef]
- Gai, X.; Han, T.; Prasad, A.; Madden, S.; Choi, D.Y.; Wang, R.; Bulla, D.; Luther-Davies, B. Progress in Optical Waveguides Fabricated from Chalcogenide Glass. Opt. Express 2010, 18, 26635–26646. [Google Scholar] [CrossRef] [PubMed]
- Gai, X.; Choi, D.Y.; Madden, S.; Yang, Z.; Wang, R.; Luther-Davies, B. Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide. Opt. Lett. 2012, 37, 3870–3872. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Kim, D.G.; Han, S. Supercontinuum generation in As2S3 waveguides fabricated without direct etching. Opt. Lett. 2021, 46, 2413–2416. [Google Scholar] [CrossRef]
- Lamont, M.R.E.; Luther-Davies, B.; Choi, D.Y. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide. Opt. Express 2008, 16, 14938–14944. [Google Scholar] [CrossRef]
- Bulla, D.A.P.; Wang, R.; Prasad, A.; Rode, A.V.; Madden, S.J.; Luther-Davies, B. On the properties and stability of thermally evaporated Ge-As-Se thin films. Appl. Phys. A Mater. Sci. Process. 2009, 96, 615–625. [Google Scholar] [CrossRef]
- Su, X.; Wang, R.; Luther-Davies, B.; Wang, L. The dependence of photosensitivity on composition for thin films of GexAsySe1-x-y chalcogenide glasses. Appl. Phys. A 2013, 113, 575–581. [Google Scholar] [CrossRef]
- Gai, X.; Choi, D.Y.; Madden, S. Polarization-independent chalcogenide glass nanowires with anomalous dispersion for all-optical processing. Opt. Express 2012, 20, 13513–13521. [Google Scholar] [CrossRef] [PubMed]
- Gai, X.; Madden, S.; Choi, D.Y. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm. Opt. Express 2010, 18, 18866–18874. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Zhang, M.; Sun, D. Optical investigation of chalcogenide glass for on-chip integrated devices. Results Phys. 2021, 28, 104552. [Google Scholar] [CrossRef]
- Shang, H.; Sun, D.; Zhang, M. On-chip detector based on supercontinuum generation in chalcogenide waveguide. J. Light Technol. 2021, 39, 3890–3895. [Google Scholar] [CrossRef]
- Piran, S.; Noori, M.; Hashemi, S.A.S. Super-Continuum Generation in Graphene-Based Chalcogenide Slot Waveguide. Ann. Phys. 2022, 534, 2100226. [Google Scholar] [CrossRef]
- Tremblay, J.É.; Malinowski, M.; Richardson, K.A. Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides. Opt. Express 2018, 26, 21358–21363. [Google Scholar] [CrossRef]
- Choi, J.W.; Han, Z.; Sohn, B.U. Nonlinear characterization of GeSbS chalcogenide glass waveguides. Sci. Rep. 2016, 6, 39234. [Google Scholar] [CrossRef]
- Du, Q.; Luo, Z.; Zhong, H. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Res. 2018, 6, 506–510. [Google Scholar] [CrossRef]
- Krogstad, M.R.; Ahn, S.; Park, W. Optical characterization of chalcogenide Ge–Sb–Se waveguides at telecom wavelengths. IEEE Photonics Technol. Lett. 2016, 28, 2720–2723. [Google Scholar] [CrossRef]
- Chiles, J.; Fathpour, S. Mid-Infrared Integrated Waveguide Modulators Based on Silicon-on-Lithium-Niobate Photonics. Optica 2014, 1, 350–355. [Google Scholar] [CrossRef]
- Mayer, A.S.; Phillips, C.R.; Langrock, C.; Klenner, A.; Johnson, A.R.; Luke, K.; Okawachi, Y.; Lipson, M.; Gaeta, A.L.; Fejer, M.M. Offset-Free Gigahertz Midinfrared Frequency Comb Based on Optical Parametric Amplification in a Periodically Poled Lithium Niobate Waveguide. Phys. Rev. Appl. 2016, 6, 054009. [Google Scholar] [CrossRef]
- Hwang, A.Y.; Stokowski, H.S.; Park, T.; Jankowski, M.; McKenna, T.P.; Langrock, C.; Mishra, J.; Ansari, V.; Fejer, M.M.; Safavi-Naeini, A.H. Mid-Infrared Spectroscopy with a Broadly Tunable Thin-Film Lithium Niobate Optical Parametric Oscillator. Optica 2023, 10, 1535–1542. [Google Scholar] [CrossRef]
- Yu, M.; Desiatov, B.; Okawachi, Y.; Gaeta, A.L.; Lončar, M. Coherent Two-Octave-Spanning Supercontinuum Generation in Lithium-Niobate Waveguides. Opt. Lett. 2019, 44, 1222–1225. [Google Scholar] [CrossRef]
- Guo, H.; Zeng, X.; Zhou, B.; Bache, M. Few-Cycle Solitons and Supercontinuum Generation with Cascaded Quadratic Nonlinearities in Unpoled Lithium Niobate Ridge Waveguides. Opt. Lett. 2014, 39, 1105–1108. [Google Scholar] [CrossRef]
- Jia, J.; Kang, Z.; Huang, Q.; He, S. Mid-Infrared Highly Efficient, Broadband, and Flattened Dispersive Wave Generation via Dual-Coupled Thin-Film Lithium-Niobate-on-Insulator Waveguide. Appl. Sci. 2022, 12, 9130. [Google Scholar] [CrossRef]
- Lu, J.; Surya, J.B.; Liu, X.; Xu, Y.; Tang, H.X. Octave-Spanning Supercontinuum Generation in Nanoscale Lithium Niobate Waveguides. Opt. Lett. 2019, 44, 1492–1495. [Google Scholar] [CrossRef]
- Wu, T.H.; Ledezma, L.; Fredrick, C.; Sekhar, P.; Sekine, R.; Guo, Q.; Briggs, R.M.; Marandi, A.; Diddams, S.A. Visible-to-Ultraviolet Frequency Comb Generation in Lithium Niobate Nanophotonic Waveguides. Nat. Photonics 2024, 18, 218–223. [Google Scholar] [CrossRef]
- Yu, M.; Shao, L.; Okawachi, Y.; Gaeta, A.L.; Loncar, M. Ultraviolet to Mid-Infrared Supercontinuum Generation in Lithium-Niobate Waveguides. In Proceedings of the Conference on Lasers and Electro-Optics, Washington, DC, USA, 10–15 May 2020; Optica Publishing Group: Washington, DC, USA, 2020; p. STu4H.1. [Google Scholar]
- Jankowski, M.; Langrock, C.; Desiatov, B.; Marandi, A.; Wang, C.; Zhang, M.; Phillips, C.R.; Lončar, M.; Fejer, M.M. Ultrabroadband Nonlinear Optics in Nanophotonic Periodically Poled Lithium Niobate Waveguides. Optica 2020, 7, 40–46. [Google Scholar] [CrossRef]
- Phillips, C.R.; Langrock, C.; Pelc, J.S.; Fejer, M.M.; Jiang, J.; Fermann, M.E.; Hartl, I. Supercontinuum Generation in Quasi-Phase-Matched LiNbO3 Waveguide Pumped by a Tm-Doped Fiber Laser System. Opt. Lett. 2011, 36, 3912–3914. [Google Scholar] [CrossRef]
- Reig Escalé, M.; Kaufmann, F.; Jiang, H.; Pohl, D.; Grange, R. Generation of 280 THz-Spanning near-Ultraviolet Light in Lithium Niobate-on-Insulator Waveguides with Sub-100 pJ Pulses. APL Photonics 2020, 5, 121301. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, B.; Steinert, M.; Setzpfandt, F.; Pertsch, T.; Chung, H.; Chen, Y.-H.; Bache, M. Supercontinuum Generation in Quadratic Nonlinear Waveguides without Quasi-Phase Matching. Opt. Lett. 2015, 40, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Grayson, M.; Xu, B.; Shanavas, T.; Zoharabi, M.; Bae, K.; Gopinath, J.T.; Park, W. Fabrication and characterization of high quality GeSbSe reflowed and etched ring resonators. Opt. Express 2022, 30, 31107–31121. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yan, K.; Wei, T.; Sun, Y.; Xu, P.; Madden, S.; Wang, R. Real time change of optical losses in chalgenide waveguides induced by light illumination. Opt. Lett. 2022, 47, 5565–5568. [Google Scholar]
- Ko, K.; Suk, D.; Kim, D.; Park, S.; Sen, B.; Wang, Y.; Dai, S.; Wang, X.; Chun, B.J.; Ko, K.; et al. The first mid-IR Brillouin laser using ultra-high Q on-chip resonator. Nat. Photonics, 2024; submitted. [Google Scholar]
Material | Refractive [email protected] μm | Third-Order Nonlinearity (cm2/W) | Transmission Range (μm) | Pump Wavelength (μm) | Maximum Range of SC Spectrum (μm) | Ref. |
---|---|---|---|---|---|---|
Al2O3 | 1.75 | 3 × 10−16 | 0.18–4.5 | 1.03 | 0.45–1.1 | [26] |
AlN | 2.2 | 2.3 × 10−15 | 0.2–5.5 | 1.56 | 0.4–4.2 | [28] |
Ta2O5 | 2.0 | ~10–14 | 0.5–8 | 1.55 | 0.5–2.5 | [36,37,38,39,40,41,42,43,44] |
TeO2 | 2.1 | 1.4 × 10−14 | 0.33–5.0 | 1.565 | 0.9–2.2 | [35] |
TiO2 | 2.4 | 9.4 × 10−15 | 1–9 | 1.64 | 1–2.4 | [48] |
Chalcogenide | 2.2–3 | 5–15 × 10−14 | 0.5–15 | 1.55 | 1.28–2.12 | [62] |
LiNbO3 | 2.21 | 1.8 × 10−15 | 0.35–5 | 1.55 | 0.35–4.1 | [73] |
SiN | 2.0 | 2.4 × 10−15 | 0.35–7 | 1.55 | 0.56–3.6 | [18] |
Si | 3.48 | 6.0 × 10−14 | 1.1–9 | 1.55 | 1.124–2.4 | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Long, Z.; Cheng, Q.; Song, M.; Wang, W.; Liu, R.; Zhang, Z.; Xia, K.; Yang, Z.; Qian, L.; et al. On-Chip Supercontinuum Generation Pumped by Short Wavelength Fiber Lasers. Photonics 2024, 11, 440. https://doi.org/10.3390/photonics11050440
Chen P, Long Z, Cheng Q, Song M, Wang W, Liu R, Zhang Z, Xia K, Yang Z, Qian L, et al. On-Chip Supercontinuum Generation Pumped by Short Wavelength Fiber Lasers. Photonics. 2024; 11(5):440. https://doi.org/10.3390/photonics11050440
Chicago/Turabian StyleChen, Peng, Zhe Long, Qi Cheng, Maozhuang Song, Wei Wang, Ruixue Liu, Zheng Zhang, Kai Xia, Zhen Yang, Lei Qian, and et al. 2024. "On-Chip Supercontinuum Generation Pumped by Short Wavelength Fiber Lasers" Photonics 11, no. 5: 440. https://doi.org/10.3390/photonics11050440
APA StyleChen, P., Long, Z., Cheng, Q., Song, M., Wang, W., Liu, R., Zhang, Z., Xia, K., Yang, Z., Qian, L., Bai, S., Wang, X., Yang, P., Xu, P., Yousef, E. S., & Wang, R. (2024). On-Chip Supercontinuum Generation Pumped by Short Wavelength Fiber Lasers. Photonics, 11(5), 440. https://doi.org/10.3390/photonics11050440