Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, L.; Tsujikawa, K.; Hanzawa, N.; Yamamoto, F. Design of optical power delivery network based on power limitation of standard single-mode fiber at a wavelength of 1550 nm. Appl. Opt. 2015, 54, 3720–3724. [Google Scholar] [CrossRef]
- Peña, R.; Algora, C.; Matías, I.R.; López-Amo, M. Fiber-based 205-mW (27% efficiency) power-delivery system for an all-fiber network with optoelectronic sensor units. Appl. Opt. 1999, 38, 2463–2466. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, W.; Chen, M.; Meng, Z. Experimental observation of the competition between stimulated Brillouin scattering, modulation instability and stimulated Raman scattering in long single mode fiber. J. Opt. 2016, 18, 085501. [Google Scholar] [CrossRef]
- Werthen, J.-G. Powering Next Generation Networks by Laser Light over Fiber. In Optical Fiber Communication Conference; OWO3; Optica Publishing Group: Washington, DC, USA, 2008. [Google Scholar]
- Nugent, T.J. Remote Electric Power Delivery via High Power Laser. In Applied Industrial Optics 2019, OSA Technical Digest; Optica Publishing Group: Washington, DC, USA, 2019; paper T3A.4. [Google Scholar]
- Bottger, G.; Dreschmann, M.; Klamouris, C.; Hubner, M.; Roger, M.; Bett, A.W.; Kueng, T.; Becker, J.; Freude, W.; Leuthold, J. An optically powered video camera link. IEEE Photonics Technol. Lett. 2007, 20, 39–41. [Google Scholar] [CrossRef]
- Cardona JD, L.; Lallana, P.C.; Altuna, R.; Fresno-Hernández, A.; Barreiro, X.; Vázquez, C. Optically feeding 1.75 W with 100 m MMF in efficient C-RAN front-hauls with sleep modes. J. Light. Technol. 2021, 39, 7948–7955. [Google Scholar] [CrossRef]
- Helmers, H.; Armbruster, C.; von Ravenstein, M.; Derix, D.; Schöner, C. 6-W optical power link with integrated optical data transmission. IEEE Trans. Power Electron. 2020, 35, 7904–7909. [Google Scholar] [CrossRef]
- Fakidis, J.; Helmers, H.; Haas, H. Simultaneous wireless data and power transfer for a 1-Gb/s GaAs VCSEL and photovoltaic link. IEEE Photonics Technol. Lett. 2020, 32, 1277–1280. [Google Scholar] [CrossRef]
- Soref, R.; De Leonardis, F.; Daligou, G.; Moutanabbir, O. Directed high-energy infrared laser beams for photovoltaic generation of electric power at remote locations. APL Energy 2024, 2, 026101. [Google Scholar] [CrossRef]
- Miyamoto, T. Optical WPT. In Theory and Technology of Wireless Power Transfer; CRC Press: Boca Raton, FL, USA, 2024; pp. 179–245. [Google Scholar]
- Aveta, F.; Basnet, S. Experimental Demonstration of Power over Fiber for Optical Communication System. In Optical Fibers and Sensors for Medical Diagnostics, Treatment, and Environmental Applications XXIV; SPIE: Cergy, France, 2024; Volume 12835, pp. 115–122. [Google Scholar]
- Garkushin, A.A.; Krishtop, V.V.; Storozhev, S.A.; Volkhin, I.L.; Nifontova, E.V.; Urbanovich, E.V.; Kustov, D.A.; Kadochikov, I.V. Digital Twin of the Photoelectric Converter of the Power Transmission System over Optical Fiber. J. Phys. Conf. Ser. 2024, 2701, 012146. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, G.; Huan, Z.; Zhang, Y.; Yuan, G.; Li, Q.; Ding, G.; Lv, Z.; Ni, W.; Shao, Y.; et al. Wireless laser power transmission: Recent progress and future challenges. Space Sol. Power Wirel. Transm. 2024, in press. [CrossRef]
- Jaffe, P.; Nugent, T.; Strassner, B., II; Szazynski, M. Power Beaming. In History, Theory, and Practice; World Scientific Series on Emerging Technologies: London, UK, 2024; Volume 5, p. 420. [Google Scholar]
- Martinek, P.; Prajzler, V. Power over fiber using a large core fiber and laser operating at 976 nm with 10 W power. Opt. Fiber Technol. 2023, 80, 103404. [Google Scholar] [CrossRef]
- Ahnood, A.; Ndabakuranye, J.P.; Li, S.; Kavehei, O.; Prawer, S. Miniature power and data transceiver based on multimodal operation of a single photovoltaic device. Eng. Res. Express 2020, 2, 015036. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, C.; Lv, H.; Zhang, Y.; Zhou, R.; Chu, W.; Lv, P.; Qin, H.; Li, S.; Li, X. Design and Research of Laser Power Converter (LPC) for Passive Optical Fiber Audio Transmission System Terminal. Photonics 2023, 10, 1257. [Google Scholar] [CrossRef]
- Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S.J. Efficiency limits of laser power converters for optical power transfer applications. J. Phys. D Appl. Phys. 2013, 46, 264006. [Google Scholar] [CrossRef]
- Geisz, J.F.; Friedman, D.J.; Steiner, M.A.; France, R.M.; Song, T. Operando Temperature Measurements of Photovoltaic Laser Power Converter Devices Under Continuous High-Intensity Illumination. IEEE J. Photovolt. 2023, 13, 808. [Google Scholar] [CrossRef]
- Albert, P.; Jaouad, A.; Hamon, G.; Volatier, M.; Valdivia, C.E.; Deshayes, Y.; Hinzer, K.; Béchou, L.; Aimez, V.; Darnon, M. Miniaturization of InGaP/InGaAs/Ge solar cells for micro-concentrator photovoltaics. Prog. Photovolt. Res. Appl. 2021, 29, 990–999. [Google Scholar] [CrossRef]
- Fafard, S.; York, M.C.A.; Proulx, F.; Valdivia, C.E.; Wilkins, M.M.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D.P. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl. Phys. Lett. 2016, 108, 071101. [Google Scholar] [CrossRef]
- Matsuura, M. Recent advancement in power-over-fiber technologies. Photonics 2021, 8, 335. [Google Scholar] [CrossRef]
- Acerbi, F.; Paternoster, G.; Merzi, S.; Zorzi, N.; Gola, A. Nuv and vuv sensitive silicon photomultipliers technologies optimized for operation at cryogenic temperatures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1046, 167683. [Google Scholar] [CrossRef]
- Delgado, M.; Gutiérrez, R.M.; Fuentes, F. Liquid argon photodetection systems for neutrino detectors: A minireview. J. Phys. Conf. Ser. 2020, 1672, 012009. [Google Scholar] [CrossRef]
- Brizzolari, C.; Carniti, P.; Cattadori, C.; Cristaldo, E.; de la Torre Rojo, A.; Delgado, M.; Falcone, A.; Francis, K.; Gallice, N.; Gotti, C.; et al. Cryogenic front-end amplifier design for large SiPM arrays in the DUNE FD1-HD photon detection system. J. Instrum. 2022, 17, P11017. [Google Scholar] [CrossRef]
- Temples, D.J.; McLaughlin, J.; Bargemann, J.; Baxter, D.; Cottle, A.; Dahl, C.E.; Lippincott, W.H.; Monte, A.; Phelan, J. Measurement of charge and light yields for Xe 127 L-shell electron captures in liquid xenon. Phys. Rev. D 2021, 104, 112001. [Google Scholar] [CrossRef]
- Abud, A.A.; Abi, B.; Acciarri, R.; Acero, M.A.; Adames, M.R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Aduszkiewicz, A.; et al. Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC. Eur. Phys. J. C 2022, 82, 618. [Google Scholar] [CrossRef] [PubMed]
- Ezzouine, Z.; Danovitch, D.; Bechou, L.; Pioro-Ladrière, M.; Lacerte, M. Contact resistance behavior of land grid array sockets at cryogenic temperatures required for quantum measurements. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 367. [Google Scholar] [CrossRef]
- Lindholm, E.A.; Stolov, A.A.; Dyer, R.S.; Slyman, B.; Burgess, D. Reliability of Optical Fibers in a Cryogenic Environment. In Proceedings of the Fiber Optic Sensors and Applications VI, Orlando, FL, USA, 13–17 April 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7316, pp. 258–263. [Google Scholar]
- Fafard, S.; Masson, D.P. Perspective on photovoltaic optical power converters. J. Appl. Phys. 2021, 130, 160901. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. High-Efficiency and High-Power Multijunction InGaAs/InP Photovoltaic Laser Power Converters for 1470 nm. Photonics 2022, 9, 438. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. 74.7% Efficient GaAs-Based Laser Power Converters at 808 nm at 150 K. Photonics 2022, 9, 579. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D. 67.5% Efficient InP-Based Laser Power Converters at 1470 nm at 77 K. Photonics 2024, 11, 130. [Google Scholar] [CrossRef]
- Helmers, H.; Lopez, E.; Höhn, O.; Lackner, D.; Schön, J.; Schauerte, M.; Schachtner, M.; Dimroth, F.; Bett, A.W. 68.9% Efficient GaAs-Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance. Phys. Status Solidi (RRL) Rapid Res. Lett. 2021, 15, 2100113. [Google Scholar] [CrossRef]
- Algora, C.; García, I.; Delgado, M.; Peña, R.; Vázquez, C.; Hinojosa, M.; Rey-Stolle, I. Beaming power: Photovoltaic laser power converters for power-by-light. Joule 2022, 6, 340–368. [Google Scholar] [CrossRef]
- Wang, A.-C.; Yin, J.-J.; Yu, S.-Z.; Sun, Y.-R.; Dong, J.-R. Origins of the short circuit current of a current mismatched multijunction photovoltaic cell considering subcell reverse breakdown. Opt. Express 2023, 31, 14482–14494. [Google Scholar] [CrossRef] [PubMed]
- Beattie, M.N.; Valdivia, C.E.; Wilkins, M.M.; Zamiri, M.; Kaller, K.L.C.; Tam, M.C.; Kim, H.S.; Krich, J.J.; Wasilewski, Z.R.; Hinzer, K. High current density tunnel diodes for multi-junction photovoltaic devices on InP substrates. Appl. Phys. Lett. 2021, 118, 062101. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Sorokina, S.V.; Khvostikova, O.A.; Nakhimovich, M.V.; Shvarts, Z. Ge-Based Photovoltaic Laser-Power Converters. IEEE J. Photovolt. 2023, 13, 254–259. [Google Scholar] [CrossRef]
- Kalyuzhnyy, N.A.; Malevskaya, A.V.; Mintairov, S.A.; Mintairov, M.A.; Nakhimovich, M.V.; Salii, R.A.; Shvarts, M.Z.; Andreev, V.M. Photovoltaic AlGaAs/GaAs devices for conversion of high-power density laser (800–860 nm) radiation. Sol. Energy Mater. Sol. Cells 2023, 262, 112551. [Google Scholar] [CrossRef]
- Gou, Y.; Zhu, L.; Mou, Z.; Chen, Y.; Cheng, Y.; Wang, J.; Yang, H.; Deng, G. InP-based tunnel junctions for ultra-high concentration photovoltaics. Opt. Express 2024, 32, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Helmers, H.; Oliva, E.; Schachtner, M.; Mikolasch, G.; Ruiz-Preciado, L.A.; Franke, A.; Bartsch, J. Overcoming Optical-Electrical Grid Design Trade-Offs for cm2-Sized High-Power GaAs Photonic Power Converters by Plating Technology. Prog. Photovolt. Res. Appl. 2024, in press. [CrossRef]
- Gou, Y.; Mou, Z.; Wang, H.; Chen, Y.; Wang, J.; Yang, H.; Deng, G. High-performance laser power converters with resistance to thermal annealing. Opt. Express 2024, 32, 8335–8342. [Google Scholar] [CrossRef] [PubMed]
- Optical Fibers from Fiber Instrument Sales (FIS) Were Used in This Study for the 1-km and 5-km Single-Mode and Multi-Mode Fiber Cables. The Single-Mode Fiber is a Corning SMF28-Ultra with a Core Diameter of 8.2 μm, Cladding of 125 μm, and NA ~0.14. The Multi-Mode Fiber is a Standard Graded-Index Corning InfiniCor OM1 Fiber with a Core Diameter of 62.5 μm, Cladding of 125 μm, and NA ~ 0.275. Available online: https://www.fiberinstrumentsales.com/ (accessed on 3 June 2024).
- BWT Beijing Ltd. Laser Diodes were Used as Multi-Mode Sources: A 7W ~1470 nm Source with a 105 μm Core was Used for the MM Experiements at 20 °C and a 8W~808 nm Source with a 400 μm Core was Used for the MM Experiements at 77 K. Available online: https://www.bwt-bj.com/en/product/ (accessed on 3 June 2024).
- A SemiNex Corporation Laser Diode was Used as a High-Power Single-Mode 1550 nm Source with a 10 nm Spectral-Width. Available online: https://seminex.com/ (accessed on 3 June 2024).
- A Lens-Coupler from OzOptics Limited was Used in this Study to Couple the 105 μm Core Fiber Laser Source to the Standard 62.5 μm Core OM1 Fiber: Part #AA-300-33-1550-M-SP1. Available online: https://www.ozoptics.com/ (accessed on 3 June 2024).
- Optical Fibers from Thorlabs Were Used in This Study for the Bare Polyimide Fibers. Available online: https://www.thorlabs.com/ (accessed on 3 June 2024).
- Laser Power Converters from Broadcom Were Used in This Study. Available online: https://www.broadcom.com/products/fiber-optic-modules-components/industrial/optical-power-components/optical-power-converters/ (accessed on 3 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fafard, S.; Masson, D. Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures. Photonics 2024, 11, 596. https://doi.org/10.3390/photonics11070596
Fafard S, Masson D. Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures. Photonics. 2024; 11(7):596. https://doi.org/10.3390/photonics11070596
Chicago/Turabian StyleFafard, Simon, and Denis Masson. 2024. "Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures" Photonics 11, no. 7: 596. https://doi.org/10.3390/photonics11070596
APA StyleFafard, S., & Masson, D. (2024). Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures. Photonics, 11(7), 596. https://doi.org/10.3390/photonics11070596