Stimulated Raman Scattering Microscopy: A Review
Abstract
:1. Introduction
2. Features of SRS Microscopes
2.1. Noise and Competitive Effects
2.2. Spectral Bandwidth and Speed
2.3. Improvement in Chemical Sensitivity
2.4. Super-Resolution
2.5. Quantum Enhancement
3. Life Science Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Streets, A.M.; Li, A.; Chen, T.; Huang, Y. Imaging without fluorescence: Nonlinear optical microscopy for quantitative cellular imaging. Anal. Chem. 2014, 86, 8506–8513. [Google Scholar] [CrossRef] [PubMed]
- Min, W.; Freudiger, C.W.; Lu, S.; Xie, X.S. Coherent nonlinear optical imaging: Beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 2011, 62, 501–530. [Google Scholar] [CrossRef]
- Popp, J.; Kiefer, W. Raman scattering, fundamentals. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; Wiley: Hoboken, NJ, USA, 2000; pp. 13104–13142. [Google Scholar]
- Ferrara, M.A.; Ranjan, R.; Righini, G.C.; Sirleto, L. Stimulated Raman scattering: Towards applications in nano and biophotonics. In Woodhead Publishing Series in Electronic and Optical Materials, Advances in Nonlinear Photonics, Woodhead Publishing; Righini, G.C., Sirleto, L., Eds.; Woodhead Publishing: Thorston, UK, 2023; pp. 489–515. ISBN 9780323983846. [Google Scholar] [CrossRef]
- Zumbusch, A.; Langbein, A.; Borri, P. Nonlinear vibrational microscopy applied to lipid biology. Prog. Lipid Res. 2013, 52, 615–632. [Google Scholar] [CrossRef]
- Alfonso-García, A.; Mittal, R.; Lee, E.S.; Potma, E.O. Biological imaging with coherent Raman scattering microscopy: A tutorial. J. Biomed. Opt. 2014, 19, 071407. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.X.; Xie, X.S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 2015, 350, aaa10670. [Google Scholar]
- Lee, H.J.; Cheng, J.-X. Imaging chemistry inside living cells by stimulated Raman scattering microscopy. Methods 2017, 128, 119–128. [Google Scholar] [CrossRef]
- Hill, A.H.; Fu, D. Cellular Imaging Using Stimulated Raman Scattering Microscopy. Anal. Chem. 2019, 91, 9333–9342. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Fung, A.A.; Zhou, A. Advances in stimulated Raman scattering imaging for tissues and animals. Quant. Imaging Med. Surg. 2021, 11, 1078–1101. [Google Scholar] [CrossRef]
- McClung, F.J.; Hellwarth, R.W. Giant Optical Pulsations from ruby. J. Appl. Phys. 1962, 33, 828–829. [Google Scholar] [CrossRef]
- Eckhardt, G.; Hellwarth, R.W.; McClung, F.J.; Schwarz, S.E.; Weiner, D.; Woodbury, E.J. Stimulated Raman scattering from organic liquids. Phys. Rev. Lett. 1962, 9, 455–457. [Google Scholar] [CrossRef]
- Eckhardt, G.; Bortfeld, D.P.; Geller, M. Stimulated emission of stokes and anti-stokes raman lines from diamond, calcite, and α-sulfur single crystals. Appl. Phys. Lett. 1963, 3, 137–138. [Google Scholar] [CrossRef]
- Lallemand, P.; Simova, P.; Bret, G. Pressure-induced line shift and collisional narrowing in hydrogen gas determined by stimulated Raman emission. Phys. Rev. Lett. 1966, 17, 1239–1241. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 2nd ed.; Academic Press: Boston, MA, USA, 2003. [Google Scholar]
- Shen, Y.R. The Principles of Nonlinear Optics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Yariv, A. Quantum Electronics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1967. [Google Scholar]
- Armstrong, J.A.; Bloembergen, N.; Ducuing, J.; Pershan, P.S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 1962, 127, 1918–1939. [Google Scholar] [CrossRef]
- Bloembergen, N.; Shen, Y.R. Coupling between vibrations and light waves in Raman Laser Media. Phys. Rev. Lett. 1964, 12, 504–507. [Google Scholar] [CrossRef]
- Bloembergen, N.; Shen, Y.R. Multimode effects in stimulated Raman emission. Phys. Rev. Lett. 1964, 13, 720–724. [Google Scholar] [CrossRef]
- Shen, Y.R.; Bloembergen, N. Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 1965, 137, 6A. [Google Scholar] [CrossRef]
- Bloembergen, N. The Stimulated Raman Effect. Am. J. Phys. 1967, 35, 989–1022. [Google Scholar] [CrossRef]
- Wang, C.S. Theory of Stimulated Raman Scattering. Phys. Rev. 1969, 182, 484–494. [Google Scholar] [CrossRef]
- Hellwarth, R.W. Theory of Stimulated Raman Scattering. Phys. Rev. 1963, 130, 1850–1852. [Google Scholar] [CrossRef]
- Raymer, M.G.; Mostowski, J. Stimulated raman scattering: Unified treatment of spontaneous initiation and spatial propagation. Phys. Rev. A 1981, 24, 1980–1993. [Google Scholar] [CrossRef]
- Raymer, M.G.; Walmsley, I.A.; Mostowski, J.; Sobolewska, B. Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Phys. Rev. A 1985, 32, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Tsikritsis, D.; Legge, E.J.; Belsey, N.A. Practical considerations for quantitative and reproducible measurements with stimulated Raman scattering microscopy. Analyst 2022, 147, 4642–4656. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Ye, T.; Matthews, T.E.; Yurtsever, G.; Warren, W.S. Two-color, two-photon, and excited-state absorption microscopy. J. Biomed. Opt. 2007, 12, 054004. [Google Scholar] [CrossRef] [PubMed]
- Isobe, K.; Kawano, H.; Suda, A.; Kumagai, A.; Miyawaki, A.; Midorikawa, K. Simultaneous imaging of two-photon absorption and stimulated Raman scattering by spatial overlap modulation nonlinear optical microscopy. Biomed. Opt. Express 2013, 4, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.W.; Samineni, P.; Warren, W.S.; Fischer, M.C. Cross-phase modulation spectral shifting: Nonlinear phase contrast in a pump-probe microscope. Biomed. Opt. Express 2012, 3, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, K.; Hibara, A.; Kimura, H.; Sawada, T.; Kitamori, T. Thermal lens microscope. Jpn. J. Appl. Phys. 2000, 39, 5316–5322. [Google Scholar] [CrossRef]
- D’Arco, A.; Ferrara, M.A.; Indolfi, M.; Tufano, V.; Sirleto, L. Label-free imaging of small lipid droplets by femtosecond-stimulated Raman scattering microscopy. J. Nonlinear Opt. Phys. Mater. 2017, 26, 1750052. [Google Scholar] [CrossRef]
- Ranjan, R.; Indolfi, M.; Ferrara, M.A.; Sirleto, L. Implementation of a nonlinear microscope based on stimulated Raman scattering. J. Vis. Exp. 2019, 149, e59614. [Google Scholar]
- Ranjan, R.; Ferrara, M.A.; Filograna, A.; Valente, C.; Sirleto, L. Femtosecond stimulated Raman microscopy: Home-built realization and a case study of biological imaging. J. Instrum. 2019, 14, P09008. [Google Scholar] [CrossRef]
- Zhang, D.; Slipchenko, M.N.; Leaird, D.E.; Weiner, A.M.; Cheng, J.-X. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Opt. Express 2013, 21, 13864–13874. [Google Scholar] [CrossRef]
- Ozeki, Y.; Dake, F.; Kajiyama, S.; Fukui, K.; Itoh, K. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt. Express 2009, 17, 3651. [Google Scholar] [CrossRef] [PubMed]
- Dietze, D.R.; Mathies, R.A. Femtosecond stimulated Raman spectroscopy. ChemPhysChem 2016, 17, 1224–1251. [Google Scholar] [CrossRef] [PubMed]
- Audier, X.; Heuke, S.; Volz, P.; Rimk, I.; Rigneault, H. Noise in stimulated Raman scattering measurement: From basics to practice. APL Photonics 2020, 5, 011101. [Google Scholar] [CrossRef]
- Nose, K.; Ozeki, Y.; Kishi, T.; Sumimura, K.; Nishizawa, N.; Fukui, K.; Kanematsu, Y.; Itoh, K. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Opt. Express 2012, 20, 13958. [Google Scholar] [CrossRef] [PubMed]
- Zada, L.; Fokker, B.; Leslie, H.A.; Vethaak, A.D.; de Boer, J.F.; Ariese, F. Stimulated Raman scattering simulation for imaging optimization. J. Eur. Opt. Soc. Rapid Publ. 2017, 17, 1. [Google Scholar]
- Ranjan, R.; Costa, G.; Ferrara, M.A.; Sansone, M.; Sirleto, L. Noises investigations and image denoising in femtosecond stimulated Raman scattering microscopy. J. Biophotonics 2022, 15, e202100379. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Costa, G.; Ferrara, M.A.; Sansone, M.; Sirleto, L. Noise Measurements and Noise Statistical Properties Investigations in a Stimulated Raman Scattering Microscope Based on Three Femtoseconds Laser Sources. Photonics 2022, 9, 910. [Google Scholar] [CrossRef]
- Berto, P.; Andresen, E.R.; Rigneault, H. Background-free stimulated Raman spectroscopy and microscopy. Phys. Rev. Lett. 2014, 112, 053905. [Google Scholar] [CrossRef]
- Ranjan, R.; D’arco, A.; Ferrara, M.A.; Indolfi, M.; Larobina, M.; Sirleto, L. Integration of stimulated Raman gain and stimulated Raman losses detection modes in a single nonlinear microscope. Opt. Express 2018, 26, 26317. [Google Scholar] [CrossRef]
- Heuke, S.; Lombardini, A.; Büttner, E.; Rigneault, H. Simultaneous stimulated Raman gain and loss detection (SRGAL). Opt. Express 2020, 28, 29619–29630. [Google Scholar] [CrossRef]
- D’Arco, A.; Brancati, N.; Ferrara, M.A.; Indolfi, M.; Frucci, M.; Sirleto, L. Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques. Biomed. Opt. Express 2016, 7, 1853. [Google Scholar] [CrossRef] [PubMed]
- Manifold, B.; Fu, D. Quantitative stimulated Raman scattering microscopy: Promises and pitfalls. Annu. Rev. Anal. Chem. 2022, 15, 269–289. [Google Scholar] [CrossRef] [PubMed]
- Saar, B.G.; Freudiger, C.W.; Reichman, J.; Stanley, C.M.; Holtom, G.R.; Xie, X.S. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 2010, 330, 1369–1370. [Google Scholar] [CrossRef]
- Freudiger, C.W.; Min, W.; Saar, B.G.; Lu, S.; Holtom, G.R.; He, C.; Tsai, J.C.; Kang, J.X.; Xie, X.S. Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science 2008, 322, 1857–1861. [Google Scholar] [CrossRef]
- Ranjan, R.; Antonietta Ferrara, M.; Sirleto, L. Femtosecond Stimulated Raman Microscopy in C-H Region of Raman Spectra of Biomolecules and Its Extension to Silent and Fingerprint Regions [Internet]. Novel Imaging and Spectroscopy; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Filograna, A.; Ranjan, R.; Corda, D.; Valente, C.; Sirleto, L. Threedimensional label-free imaging throughout adipocyte differentiation by stimulated Raman microscopy. PLoS ONE 2019, 14, e0216811. [Google Scholar] [CrossRef]
- Fu, D.; Zhou, J.; Zhu, W.S.; Manley, P.W.; Wang, Y.K.; Hood, T.; Wylie, A.; Xie, X.S. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 2014, 6, 614–622. [Google Scholar] [CrossRef]
- Orringer, D.A.; Pandian, B.; Niknafs, Y.S.; Hollon, T.C.; Boyle, J.; Lewis, S.; Garrard, M.; Hervey-Jumper, S.L.; Garton, H.J.; Maher, C.O.; et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 2017, 1, 0027. [Google Scholar] [CrossRef]
- He, R.; Xu, Y.; Zhang, L.; Ma, S.; Wang, X.; Ye, D.; Ji, M. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging. Optica 2017, 4, 44–47. [Google Scholar] [CrossRef]
- Galli, R.; Uckermann, O.; Temme, A.; Leipnitz, E.; Meinhardt, M.; Koch, E.; Schackert, G.; Steiner, G.; Kirsch, M. Assessing the Efficacy of Coherent Anti-Stokes Raman Scattering Microscopy for the Detection of Infiltrating Glioblastoma in Fresh Brain Samples. J. Biophotonics 2017, 10, 404–414. [Google Scholar] [CrossRef]
- Pekmezci, M.; Morshed, R.A.; Chunduru, P.; Pandian, B.; Young, J.; Villanueva-Meyer, J.E.; Tihan, T.; Sloan, E.A.; Aghi, M.K.; Molinaro, A.M.; et al. Detection of Glioma Infiltration at the Tumor Margin Using Quantitative Stimulated Raman Scattering Histology. Sci. Rep. 2021, 11, 12162. [Google Scholar] [CrossRef]
- Yan, S.; Li, Y.; Huang, Z.; Yuan, X.; Wang, P. High-Speed Stimulated Raman Scattering Microscopy Using Inertia-Free AOD Scanning. J. Phys. Chem. B 2023, 127, 4229–4234. [Google Scholar] [CrossRef] [PubMed]
- Pegoraro, A.F.; Ridsdale, A.; Moffatt, D.J.; Jia, Y.W.; Pezacki, J.P.; Stolow, A. Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator. Opt. Express 2009, 17, 2984–2996. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.; Berry, K.; Chen, Y.; Figueroa, B.; Fu, D. Label-free pathology by spectrally sliced femtosecond stimulated Raman scattering (SRS) microscopy. PLoS ONE 2017, 12, e0178750. [Google Scholar] [CrossRef] [PubMed]
- Sirleto, L.; Ranjan, R.; Ferrara, M.A. Analysis of pulses bandwidth and spectral resolution in femtosecond stimulated Raman scattering microscopy. Appl. Sci. 2019, 11, 3903. [Google Scholar] [CrossRef]
- Zhang, D.; Slipchenko, M.N.; Cheng, J.X. Highly Sensitive Vibrational Imaging by Femtosecond Pulse Stimulated Raman Loss. J. Phys. Chem. Microsc. Lett. 2011, 2, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Lu, F.K.; Zhang, X.; Freudiger, C.; Pernik, D.R.; Holtom, G.; Xie, X.S. Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering. J. Am. Chem. Soc. 2012, 134, 3623–3626. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.J.; Ji, M.B.; Holtom, G.R.; Fu, D.; Freudiger, C.W.; Xie, X.S. Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator. Opt. Lett. 2013, 38, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Holtom, G.; Freudiger, C.; Zhang, X.; Xie, X.S. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. J. Phys. Chem. B 2013, 117, 4634–4640. [Google Scholar] [CrossRef]
- Ozeki, Y.; Umemura, W.; Otsuka, Y.; Satoh, S.; Hashimoto, H.; Sumimura, K.; Nishizawa, N.; Fukui, K.; Itoh, K. High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat. Photonics 2012, 6, 845–851. [Google Scholar] [CrossRef]
- Ozeki, Y.; Umemura, W.; Sumimura, K.; Nishizawa, N.; Fukui, K.; Itoh, K. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses. Opt. Lett. 2012, 37, 431–433. [Google Scholar] [CrossRef]
- Karpf, S.; Eibl, M.; Wieser, W.; Klein, T.; Huber, R. A time-encoded technique for fibre-based hyperspectral broadband stimulated 711 Raman microscopy. Nat. Commun. 2015, 6, 6784. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, M.; Polzer, C.; Hellerer, T. Resolution of spectral focusing in coherent Raman imaging. Opt. Express 2018, 26, 10230–10241. [Google Scholar] [CrossRef] [PubMed]
- Hellerer, T.; Enejder, A.M.K.; Zumbusch, A. Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses. Appl. Phys. Lett. 2004, 85, 25–27. [Google Scholar] [CrossRef]
- Liu, B.; Lee, H.J.; Zhang, D.L.; Liao, C.-S.; Ji, N.; Xia, Y.Q.; Cheng, J.-X. Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. Appl. Phys. Lett. 2015, 106, 173704. [Google Scholar] [CrossRef]
- Liao, C.-S.; Huang, K.-C.; Hong, W.; Chen, A.J.; Karanja, C.; Wang, P.; Eakins, G.; Cheng, J.-X. Stimulated Raman spectroscopic imaging by microsecond delay-line tuning. Optica 2016, 3, 1377–1380. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, P.; Slipchenko, M.N.; Ben-Amotz, D.; Weiner, A.M.; Cheng, J.X. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis. Anal. Chem. 2013, 85, 98–106. [Google Scholar] [CrossRef]
- Bae, K.; Zheng, W.; Huang, Z. Spatial light-modulated stimulated Raman scattering (SLM-SRS) microscopy for rapid multiplexed vibrational imaging. Theranostics 2020, 10, 312–322. [Google Scholar] [CrossRef]
- Camp, C.H., Jr.; Lee, Y.J.; Heddleston, J.M.; Hartshorn, C.M.; Walker, A.R.H.; Rich, J.N.; Lathia, J.D.; Cicerone, M.T. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics 2014, 8, 627–634. [Google Scholar] [CrossRef]
- Hashimoto, K.; Takahashi, M.; Ideguchi, T.; Goda, K. Broadband coherent Raman spectroscopy running at 24,000 spectra per second. Sci. Rep. 2016, 6, 21036. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, W.; Huang, Z. Lock-in-detection-free linescan stimulated Raman scattering microscopy for near video-rate Raman imaging. Opt. Lett. 2016, 41, 3960–3963. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, K.C.; Rajwa, B.; Li, J.; Yang, S.; Lin, H.; Liao, C.S.; Eakins, G.; Kuang, S.; Patsekin, V.; et al. Stimulated Raman scattering flow cytometry for labelfree single-particle analysis. Optica 2017, 4, 103–109. [Google Scholar] [CrossRef]
- Lin, H.; Liao, C.S.; Wang, P.; Kong, N.; Cheng, J.X. Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion. Light Sci. Appl. 2018, 7, 17179. [Google Scholar] [CrossRef]
- Wei, L.; Hu, F.; Chen, Z.; Shen, Y.; Zhang, L.; Min, W. Live- Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes. Acc. Chem. Res. 2016, 49, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chen, Z.; Shi, L.; Long, R.; Anzalone, A.V.; Zhang, L.; Hu, F.; Yuste, R.; Cornish, V.W.; Min, W. Super-multiplex vibrational imaging. Nature 2017, 544, 465–470. [Google Scholar] [CrossRef]
- Hu, F.; Zeng, C.; Long, R.; Miao, Y.; Wei, L.; Xu, Q.; Min, W. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Methods 2018, 15, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Qian, N.; Shi, L.; Hu, F.; Min, W. 9-Cyanopyronin probe palette for super-multiplexed vibrational imaging. Nat. Commun. 2021, 2, 4518. [Google Scholar] [CrossRef]
- Shi, L.; Wei, M.; Miao, Y.; Qian, N.; Shi, L.; Singer, R.A.; Benninger, R.K.; Min, W. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat. Biotechnol. 2022, 40, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780. [Google Scholar] [CrossRef]
- Fujita, K.; Kobayashi, M.; Kawano, S.; Yamanaka, M.; Kawata, S. High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 2007, 99, 228105. [Google Scholar] [CrossRef]
- Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000, 198, 82. [Google Scholar] [CrossRef]
- Huang, F.M.; Zheludev, N.I. Super-resolution without evanescent waves. Nano Lett. 2009, 9, 1249. [Google Scholar] [CrossRef] [PubMed]
- Hajek, K.M.; Littleton, B.; Turk, D.; McIntyre, T.J.; Rubinsztein-Dunlop, H. A method for achieving super-resolved widefield CARS microscopy. Opt. Express 2010, 18, 19263. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, S.-W.; Lee, E.S.; Lee, J.Y. A method for super-resolved CARS microscopy with structured illumination in two dimensions. Opt. Express 2014, 22, 9854. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Zheng, W.; Ma, Y.; Huang, Z. Higher-order coherent anti-stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat. Photonics 2020, 14, 115. [Google Scholar] [CrossRef]
- Gong, L.; Zheng, W.; Ma, Y.; Huang, Z. Saturated stimulated-Raman-scattering microscopy for far-field superresolution vibrational imaging. Phys. Rev. Appl. 2019, 11, 034041. [Google Scholar] [CrossRef]
- Gong, L.; Wang, H. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study. Phys. Rev. A 2014, 90, 013818. [Google Scholar] [CrossRef]
- Gong, L.; Wang, H. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency-like scheme and its application for super-resolution microscopy. Phys. Rev. A 2015, 92, 023828. [Google Scholar] [CrossRef]
- Silva, W.R.; Graefe, C.T.; Frontiera, R.R. Toward label-free super-resolution microscopy. ACS Photonics 2016, 3, 79. [Google Scholar] [CrossRef]
- Yonemaru, Y.; Palonpon, A.F.; Kawano, S.; Smith, N.I.; Kawata, S.; Fujita, K. Super-spatial- and -spectral-resolution in vibrational imaging via saturated coherent anti-stokes Raman scattering. Phys. Rev. Appl. 2015, 4, 014010. [Google Scholar] [CrossRef]
- Beeker, W.P.; Groß, P.; Lee, C.J.; Cleff, C.; Offerhaus, H.L.; Fallnich, C.; Herek, J.L.; Boller, K.-J. A route to sub-diffraction-limited CARS microscopy. Opt. Express 2019, 17, 22632. [Google Scholar] [CrossRef]
- Beeker, W.P.; Lee, C.J.; Boller, K.-J.; Groß, P.; Cleff, C.; Fallnich, C.; Offerhaus, H.L.; Herek, J.L. Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-stokes Raman-scattering microscopy. Phys. Rev. A 2010, 81, 012507. [Google Scholar] [CrossRef]
- Cleff, C.; Groß, P.; Fallnich, C.; Offerhaus, H.L.; Herek, J.L.; Kruse, K.; Beeker, W.P.; Lee, C.J.; Boller, K.-J. Ground-state depletion for subdiffractionlimited spatial resolution in coherent anti-stokes Raman scattering microscopy. Phys. Rev. A 2012, 86, 023825. [Google Scholar] [CrossRef]
- Gong, L.; Lin, J.; Hao, C.; Zheng, W.; Wu, S.Q.Y.; Teng, J.; Qiu, C.-W.; Huang, Z. Supercritical focusing coherent anti-stokes Raman scattering microscopy for high-resolution vibrational imaging. Opt. Lett. 2018, 43, 5615. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Bryant, G.W.; Stranick, S.J. Superresolution four-wave mixing microscopy. Opt. Express 2012, 20, 6042. [Google Scholar] [CrossRef] [PubMed]
- Raghunathan, V.; Potma, E.O. Multiplicative and subtractive focal volume engineering in coherent Raman microscopy. J. Opt. Soc. Am. A 2010, 27, 2365. [Google Scholar] [CrossRef] [PubMed]
- Prince, R.C.; Potma, E.O. Going visible: High-resolution coherent Raman imaging of cells and tissues. Light Sci. Appl. 2019, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Wassie, A.T.; Zhao, Y.; Boyden, E.S. Expansion microscopy: Principles and uses in biological research. Nat. Methods 2016, 16, 33–41. [Google Scholar] [CrossRef]
- Klimas, A.; Gallagher, B.; Wijesekara, P.; Fekir, S.; Stolz, D.; Cambi, F.; Watkins, S.; Barth, A.; Moore, C.; Ren, X.; et al. Magnify is a universal molecular anchoring strategy for expansion microscopy. Nat. Biotechnol. 2023, 41, 858–869. [Google Scholar] [CrossRef]
- Shi, L.; Klimas, A.; Gallagher, B.; Cheng, Z.; Fu, F.; Wijesekara, P.; Miao, Y.; Ren, X.; Zhao, Y.; Min, W. Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy. Adv. Sci. 2022, 9, 2200315. [Google Scholar] [CrossRef]
- Lawrie, B.J.; Lett, P.D.; Marino, A.M.; Pooser, R.C. Quantum sensing with squeezed light. ACS Photonics 2019, 6, 1307–1318. [Google Scholar] [CrossRef]
- Pirandola, S.; Bardhan, B.R.; Gehring, T.; Weedbrook, C.; Lloyd, S. Advances in photonic quantum sensing. Nat. Photonics 2018, 12, 724–733. [Google Scholar] [CrossRef]
- Taylor, M.A.; Bowen, W.P. Quantum metrology and its application in biology. Phys. Rep. 2016, 615, 1–59. [Google Scholar] [CrossRef]
- Slusher, R.E. Quantum optics in the ’80s. Opt. Photonics News 1990, 1, 27–30. [Google Scholar] [CrossRef]
- Sewell, R.J.; Napolitano, M.; Behbood, N.; Colangelo, G.; Mitchell, M.W. Certified quantum non-demolition measurement of a macroscopic material system. Nat. Photonics 2013, 7, 517–520. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Andersen, U.L.; Gehring, T.; Marquardt, C.; Leuchs, G. 30 Years of squeezed light generation. Phys. Scr. 2016, 91, 053001. [Google Scholar] [CrossRef]
- Slusher, R.E.; Hollberg, L.W.; Yurke, B.; Mertz, J.C.; Valley, J.F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 1985, 55, 2409–2412. [Google Scholar] [CrossRef]
- Moreau, P.-A.; Toninelli, E.; Gregory, T.; Padgett, M.J. Imaging with quantum states of light. Nat. Rev. Phys. 2019, 1, 367–380. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, H.; Shi, R.; Cheng, J.-X. Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Opt. Express 2006, 14, 3942–3951. [Google Scholar] [CrossRef]
- Xu, Z.; Oguchi, K.; Taguchi, Y.; Sano, Y.; Miyawaki, Y.; Cheon, D.; Katoh, K.; Ozeki, Y. Stimulated Raman scattering spectroscopy with quantum-enhanced balanced detection. Opt. Express 2022, 30, 18589. [Google Scholar] [CrossRef]
- Xu, Z.; Oguchi, K.; Taguchi, Y.; Takahashi, S.; Sano, Y.; Mizuguchi, T.; Katoh, K.; Ozeki, Y. Quantum-enhanced stimulated Raman scattering microscopy in a high-power regime. Opt. Lett. 2022, 47, 5829. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, R.B.; Kerdoncuff, H.; Berg-Sørensen, K.; Gehring, T.; Lassen, M.; Andersen, U.L. Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy. Optica 2020, 7, 470–475. [Google Scholar] [CrossRef]
- Casacio, C.A.; Madsen, L.S.; Terrasson, A.; Waleed, M.; Barnscheidt, K.; Hage, B.; Taylor, M.A.; Bowen, W.P. Quantum-enhanced nonlinear microscopy. Nature 2021, 594, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Lin, S.; Huang, Z. Super-resolution stimulated Raman scattering microscopy enhanced by quantum light and deconvolution. Opt. Lett. 2023, 48, 6516–6519. [Google Scholar] [CrossRef] [PubMed]
- Beskrovnyy, V.; Kolobov, M. Quantum limits of super-resolution in reconstruction of optical objects. Phys. Rev. A 2005, 71, 043802. [Google Scholar] [CrossRef]
- Yue, S.; Cheng, J.X. Deciphering single cell metabolism by coherent Raman scattering microscopy. Curr. Opin. Chem. Biol. 2016, 33, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Tirinato, L.; Pagliari, F.; Limongi, T.; Marini, M.; Falqui, A.; Seco, J.; Candeloro, P.; Liberale, C.; Di Fabrizio, E. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells. Stem Cells Int. 2017, 2017, 1656053. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Li, J.; Lee, S.-Y.; Lee, H.J.; Shao, T.; Song, B.; Cheng, L.; Masterson, T.A.; Liu, X.; Ratliff, T.L.; et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell. Metab. 2014, 19, 393–406. [Google Scholar] [CrossRef]
- Dou, W.; Zhang, D.; Jung, Y.; Cheng, J.X.; Umulis, D.M. Label-free imaging of lipid droplet intracellular motion in early Drosophila embryos using femtosecond stimulated Raman loss microscopy. Biophys. J. 2012, 102, 1666–1675. [Google Scholar] [CrossRef]
- AH, H.; Manifold, B.; Fu, D. Tissue imaging depth limit of stimulated Raman scattering microscopy. Biomed. Opt. Express 2020, 11, 762–774. [Google Scholar]
- Ji, M.; Orringer, D.A.; Freudiger, C.W.; Ramkissoon, S.; Liu, X.; Lau, D.; Golby, A.J.; Norton, I.; Hayashi, M.; Agar, N.Y.; et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 2013, 5, 201ra119. [Google Scholar] [CrossRef]
- Lu, F.K.; Calligaris, D.; Olubiyi, O.I.; Norton, I.; Yang, W.; Santagata, S.; Xie, X.S.; Golby, A.J.; Agar, N.Y. Label-Free Neurosurgical Pathology with Stimulated Raman Imaging. Cancer Res. 2016, 76, 3451–3462. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Arbel, M.; Zhang, L.; Freudiger, C.W.; Hou, S.S.; Lin, D.; Yang, X.; Bacskai, B.J.; Xie, X.S. Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated Raman scattering microscopy. Sci. Adv. 2018, 4, eaat7715. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Yang, W.; Mordes, D.A.; Wang, J.Y.; Salameh, J.S.; Mok, J.; Chew, J.; Sharma, A.; Leno-Duran, E.; Suzuki-Uemats Suzuki, N.; et al. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nat. Commun. 2016, 7, 13283. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Yang, W.; Xie, X.S. Label-free Imaging of Neurotransmitter Acetylcholine at Neuromuscular Junctions with Stimulated Raman Scattering. J. Am. Chem. Soc. 2017, 139, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.S.; Wang, P.; Huang, C.Y.; Lin, P.; Eakins, G.; Bentley, R.T.; Liang, R.; Cheng, J.X. In Vivo and in Situ Spectroscopic Imaging by a Handheld Stimulated Raman Scattering Microscope. ACS Photonics 2018, 5, 947–954. [Google Scholar] [CrossRef]
- Tipping, W.J.; Lee, M.; Serrels, A.; Brunton, V.G.; Hulme, A.N. Stimulated Raman scattering microscopy: An emerging tool for drug discovery. Chem. Soc. Rev. 2016, 45, 2075–2089. [Google Scholar] [CrossRef]
- Hong, W.; Zhang, M.; Cheng, J.-X. Rapid determination of antimicrobial susceptibility by SRS single-cell metabolic imaging. In Chapter 29—Title: Stimulated Raman Scattering Microscopy; Cheng, J.-X., Min, W., Ozeki, Y., Polli, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 445–461. ISBN 9780323851589. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjan, R.; Sirleto, L. Stimulated Raman Scattering Microscopy: A Review. Photonics 2024, 11, 489. https://doi.org/10.3390/photonics11060489
Ranjan R, Sirleto L. Stimulated Raman Scattering Microscopy: A Review. Photonics. 2024; 11(6):489. https://doi.org/10.3390/photonics11060489
Chicago/Turabian StyleRanjan, Rajeev, and Luigi Sirleto. 2024. "Stimulated Raman Scattering Microscopy: A Review" Photonics 11, no. 6: 489. https://doi.org/10.3390/photonics11060489
APA StyleRanjan, R., & Sirleto, L. (2024). Stimulated Raman Scattering Microscopy: A Review. Photonics, 11(6), 489. https://doi.org/10.3390/photonics11060489