High-Performance NOON State from a Quantum Dot Single Photon for Supersensitive Optical Phase Measurement
Abstract
:1. Introduction
2. Principle
3. Results
3.1. Preparation of the High-Performance NOON State
3.2. Phase Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F. Photonic Quantum Metrology. AVS Quantum Sci. 2020, 2, 24703. [Google Scholar] [CrossRef]
- Higgins, B.L.; Berry, D.W.; Bartlett, S.D.; Wiseman, H.M.; Pryde, G.J. Entanglement-Free Heisenberg-Limited Phase Estimation. Nature 2007, 450, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Guo, Y.-P.; Xu, M.-C.; Liu, R.-Z.; Zou, G.-Y.; Zhao, J.-Y.; Ge, Z.-X.; Zhang, Q.-H.; Liu, H.-L.; Chen, M.-C.; et al. High-Efficiency Single-Photon Source above the Loss-Tolerant Threshold for Efficient Linear Optical Quantum Computing. arXiv 2023, arXiv:2311.08347. [Google Scholar]
- Schnabel, R.; Mavalvala, N.; McClelland, D.E.; Lam, P.K. Quantum Metrology for Gravitational Wave Astronomy. Nat. Commun. 2010, 1, 121. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, J.; Chen, S.; Chen, M.C.; You, X.; Ding, X.; Huo, Y.H.; Yu, Y.; Schneider, C.; Höfling, S.; et al. Observation of Intensity Squeezing in Resonance Fluorescence from a Solid-State Device. Phys. Rev. Lett. 2020, 125, 153601. [Google Scholar] [CrossRef] [PubMed]
- Motes, K.R.; Olson, J.P.; Rabeaux, E.J.; Dowling, J.P.; Olson, S.J.; Rohde, P.P. Linear Optical Quantum Metrology with Single Photons: Exploiting Spontaneously Generated Entanglement to Beat the Shot-Noise Limit. Phys. Rev. Lett. 2015, 114, 170802. [Google Scholar] [CrossRef] [PubMed]
- Nagata, T.; Okamoto, R.; O’Brien, J.L.; Sasaki, K.; Takeuchi, S. Beating the Standard Quantum Limit with Four-Entangled Photons. Science 2007, 316, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Vural, H.; Schneider, C.; Rastelli, A.; Schmidt, O.G.; Höfling, S.; Michler, P. Quantum-Dot Single-Photon Sources for Entanglement Enhanced Interferometry. Phys. Rev. Lett. 2017, 118, 257402. [Google Scholar] [CrossRef] [PubMed]
- Peniakov, G.; Su, Z.E.; Beck, A.; Cogan, D.; Amar, O.; Gershoni, D. Towards Supersensitive Optical Phase Measurement Using a Deterministic Source of Entangled Multiphoton States. Phys. Rev. B 2020, 101, 245406. [Google Scholar] [CrossRef]
- Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Matthews, J.C.F.; Politi, A.; Stefanov, A.; O’Brien, J.L. Manipulation of Multiphoton Entanglement in Waveguide Quantum Circuits. Nat. Photonics 2009, 3, 346–350. [Google Scholar] [CrossRef]
- Huelga, S.F.; Macchiavello, C.; Pellizzari, T.; Ekert, A.K.; Plenio, M.B.; Cirac, J.I. Improvement of Frequency Standards with Quantum Entanglement. Phys. Rev. Lett. 1997, 79, 3865–3868. [Google Scholar] [CrossRef]
- Rubin, M.A.; Kaushik, S. Loss-Induced Limits to Phase Measurement Precision with Maximally Entangled States. Phys. Rev. A 2007, 75, 053805. [Google Scholar] [CrossRef]
- Mitchell, M.W.; Lundeen, J.S.; Steinberg, A.M. Super-Resolving Phase Measurements with a Multiphoton Entangled State. Nature 2004, 429, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Walther, P.; Pan, J.W.; Aspelmeyer, M.; Ursin, R.; Gasparoni, S.; Zeilinger, A. De Broglie Wavelength of a Non-Local Four-Photon State. Nature 2004, 429, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.J.; Lee, J.P.; Ellis, D.J.P.; Meany, T.; Murray, E.; Floether, F.F.; Griffths, J.P.; Farrer, I.; Ritchie, D.A.; Shields, A.J. Cavity-Enhanced Coherent Light Scattering from a Quantum Dot. Sci. Adv. 2016, 2, e1501256. [Google Scholar] [CrossRef]
- He, Y.M.; He, Y.; Wei, Y.J.; Wu, D.; Atatüre, M.; Schneider, C.; Höfling, S.; Kamp, M.; Lu, C.Y.; Pan, J.W. On-Demand Semiconductor Single-Photon Source with near-Unity Indistinguishability. Nat. Nanotechnol. 2013, 8, 213–217. [Google Scholar] [CrossRef]
- Ding, X.; He, Y.; Duan, Z.-C.; Gregersen, N.; Chen, M.-C.; Unsleber, S.; Maier, S.; Schneider, C.; Kamp, M.; Höfling, S.; et al. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. Phys. Rev. Lett. 2016, 116, 20401. [Google Scholar] [CrossRef] [PubMed]
- Moczała-Dusanowska, M.; Dusanowski, Ł.; Iff, O.; Huber, T.; Kuhn, S.; Czyszanowski, T.; Schneider, C.; Höfling, S. Strain-Tunable Single-Photon Source Based on a Circular Bragg Grating Cavity with Embedded Quantum Dots. ACS Photonics 2020, 7, 3474–3480. [Google Scholar] [CrossRef]
- Uppu, R.; Pedersen, F.T.; Wang, Y.; Olesen, C.T.; Papon, C.; Zhou, X.; Midolo, L.; Scholz, S.; Wieck, A.D.; Ludwig, A.; et al. Scalable Integrated Single-Photon Source. Sci. Adv. 2020, 6, eabc8268. [Google Scholar] [CrossRef]
- Wang, H.; Qin, J.; Ding, X.; Chen, M.-C.; Chen, S.; You, X.; He, Y.-M.; Jiang, X.; You, L.; Wang, Z.; et al. Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 1014-Dimensional Hilbert Space. Phys. Rev. Lett. 2019, 123, 250503. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, R.; Fischer, K.A.; Vučković, J.; Müller, K. Generation of Non-Classical Light Using Semiconductor Quantum Dots. Adv. Quantum Technol. 2020, 3, 1900007. [Google Scholar] [CrossRef]
- Wang, X.L.; Luo, Y.H.; Huang, H.L.; Chen, M.C.; Su, Z.E.; Liu, C.; Chen, C.; Li, W.; Fang, Y.Q.; Jiang, X.; et al. 18-Qubit Entanglement with Six Photons’ Three Degrees of Freedom. Phys. Rev. Lett. 2018, 120, 260502. [Google Scholar] [CrossRef] [PubMed]
- Gaál, B.; Jacobsen, M.A.; Vannucci, L.; Claudon, J.; Gérard, J.-M.; Gregersen, N. Near-Unity Efficiency and Photon Indistinguishability for the “Hourglass” Single-Photon Source Using Suppression of the Background Emission. Appl. Phys. Lett. 2022, 121, 170501. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Rao, Z.; Zheng, Z.; Song, C.; Chen, Y.; Xiong, K.; Chen, P.; Zhang, C.; Wu, W.; et al. Tunable Quantum Dots in Monolithic Fabry-Perot Microcavities for High-Performance Single-Photon Sources. Light Sci. Appl. 2024, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Yang, J.; Song, C.; Rao, M.; Zheng, Z.; Liu, L.; Peng, X.; Yu, Y.; Yu, S. Filter-Free High-Performance Single Photon Emission from a Quantum Dot in a Fabry-Perot Microcavity. arXiv 2024, arXiv:2402.11623. [Google Scholar]
- Lee, H.; Kok, P.; Dowling, J.P. A Quantum Rosetta Stone for Interferometry. J. Mod. Opt. 2002, 49, 2325–2338. [Google Scholar] [CrossRef]
- Tomm, N.; Javadi, A.; Antoniadis, N.O.; Najer, D.; Löbl, M.C.; Korsch, A.R.; Schott, R.; Valentin, S.R.; Wieck, A.D.; Ludwig, A.; et al. A Bright and Fast Source of Coherent Single Photons. Nat. Nanotechnol. 2021, 16, 399–403. [Google Scholar] [CrossRef]
- Santori, C.; Fattal, D.; Vučković, J.; Solomon, G.S.; Yamamoto, Y. Indistinguishable Photons from a Single-Photon Device. Nature 2002, 419, 594–597. [Google Scholar] [CrossRef]
- Hong, C.K.; Ou, Z.Y.; Mandel, L. Measurement of Subpicosecond Time Intervals between Two Photons by Interference. Phys. Rev. Lett. 1987, 59, 2044–2046. [Google Scholar] [CrossRef]
- Resch, K.J.; Pregnell, K.L.; Prevedel, R.; Gilchrist, A.; Pryde, G.J.; O’Brien, J.L.; White, A.G. Time-Reversal and Super-Resolving Phase Measurements. Phys. Rev. Lett. 2007, 98, 223601. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Löbl, M.C.; Nguyen, G.N.; Ritzmann, J.; Javadi, A.; Spinnler, C.; Wieck, A.D.; Ludwig, A.; Warburton, R.J. Low-Noise GaAs Quantum Dots for Quantum Photonics. Nat. Commun. 2020, 11, 4745. [Google Scholar] [CrossRef] [PubMed]
- Snijders, H.; Frey, J.A.; Norman, J.; Post, V.P.; Gossard, A.C.; Bowers, J.E.; Van Exter, M.P.; Löffler, W.; Bouwmeester, D. Fiber-Coupled Cavity-QED Source of Identical Single Photons. Phys. Rev. Appl. 2018, 9, 31002. [Google Scholar] [CrossRef]
- Zeuner, K.D.; Jöns, K.D.; Schweickert, L.; Reuterskiöld Hedlund, C.; Nuñez Lobato, C.; Lettner, T.; Wang, K.; Gyger, S.; Schöll, E.; Steinhauer, S.; et al. On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots. ACS Photonics 2021, 8, 2337–2344. [Google Scholar] [CrossRef]
- Coste, N.; Fioretto, D.A.; Belabas, N.; Wein, S.C.; Hilaire, P.; Frantzeskakis, R.; Gundin, M.; Goes, B.; Somaschi, N.; Morassi, M.; et al. High-Rate Entanglement between a Semiconductor Spin and Indistinguishable Photons. Nat. Photonics 2023, 17, 582–587. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Z.; Yang, J.; Liu, L.; Yu, Y. High-Performance NOON State from a Quantum Dot Single Photon for Supersensitive Optical Phase Measurement. Photonics 2024, 11, 512. https://doi.org/10.3390/photonics11060512
Rao Z, Yang J, Liu L, Yu Y. High-Performance NOON State from a Quantum Dot Single Photon for Supersensitive Optical Phase Measurement. Photonics. 2024; 11(6):512. https://doi.org/10.3390/photonics11060512
Chicago/Turabian StyleRao, Zhixuan, Jiawei Yang, Luyu Liu, and Ying Yu. 2024. "High-Performance NOON State from a Quantum Dot Single Photon for Supersensitive Optical Phase Measurement" Photonics 11, no. 6: 512. https://doi.org/10.3390/photonics11060512
APA StyleRao, Z., Yang, J., Liu, L., & Yu, Y. (2024). High-Performance NOON State from a Quantum Dot Single Photon for Supersensitive Optical Phase Measurement. Photonics, 11(6), 512. https://doi.org/10.3390/photonics11060512