Generation of Bright–Dark Pulse Pairs in the Er-Doped Mode-Locked Fiber Laser Based on Doped Fiber Saturable Absorber
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
3.1. EDFL Based on THDF-SA
3.2. EDFL Based on YDF-SA and EDF-SA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oe, R.; Taue, S.; Minamikawa, T.; Nagai, K.; Shibuya, K.; Mizuno, T.; Yamagiwa, M.; Mizutani, Y.; Yamamoto, H.; Iwata, T.; et al. Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor. Opt. Express 2018, 26, 19694–19706. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lv, R.; Liu, S.; Yan, P.; Wang, Y.; Ren, W.; Wang, J.; Chen, Z. Nonlinear optical response and application of WS2 saturable absorber. Laser Phys. Lett. 2018, 15, 115102. [Google Scholar] [CrossRef]
- Gabel, C.V. Femtosecond lasers in biology: Nanoscale surgery with ultrafast optics. Contemp. Phys. 2008, 49, 391–411. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y.; Midorikawa, K. Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl. Phys. A 2005, 81, 1–10. [Google Scholar] [CrossRef]
- Kehayas, E.; Stampoulidis, L.; Henderson, P.; Robertson, A.; Van Dijk, F.; Achouche, M.; Le Kernec, A.; Sotom, M.; Schuberts, F.; Brabant, T. The European project HIPPO high-power photonics for satellite laser communications and on-board optical pro-cessing. In Proceedings of the International Conference on Space Optics—ICSO 2014, Tenerife, Spain, 6–10 October 2014; SPIE: Bellingham, WA, USA, 2017; pp. 1527–1532. [Google Scholar]
- Dolfi-Bouteyre, A.; Canat, G.; Valla, M.; Augere, B.; Besson, C.; Goular, D.; Lombard, L.; Cariou, J.; Durecu, A.; Fleury, D. Pulsed 1.5 μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 441–450. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Q.-Y.; Zhu, Z.-W.; Qi, Y.-Y.; Yin, P.; Ge, Y.-Q.; Li, L.; Jin, L.; Zhang, L.; Zhang, H. Recent advances and challenges on dark solitons in fiber lasers. Opt. Laser Technol. 2022, 152, 108116. [Google Scholar] [CrossRef]
- Zakharov, V.; Shabat, A. Interaction between solitons in a stable medium. Sov. Phys. JETP 1973, 37, 823–828. [Google Scholar]
- Saarloos, W.; Hohenberg, P. Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations. Phys. D Nonlinear Phenom. 1992, 56, 303–367. [Google Scholar] [CrossRef]
- Bekki, N.; Nozaki, K. Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation. Phys. Lett. A 1985, 110, 133–135. [Google Scholar] [CrossRef]
- Tiu, Z.C.; Suthaskumar, M.; Zarei, A.; Tan, S.J.; Ahmad, H.; Harun, S.W. Generation of switchable domain wall and cubic–quintic nonlinear Schrödinger equation dark pulse. Opt. Laser Technol. 2015, 73, 127–129. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, D.Y.; Zhao, L.M.; Knize, R.J. Vector dark domain wall solitons in a fiber ring laser. Opt. Express 2010, 18, 4428–4433. [Google Scholar] [CrossRef] [PubMed]
- Zian, C.T.; Arman, Z.; Sin, J.T.; Harith, A.; Sulaiman, W.H. Harmonic dark pulse emission in erbium-doped fiber laser. Chin. Phys. Lett. 2015, 32, 034203. [Google Scholar] [CrossRef]
- Tang, D.Y.; Li, L.; Song, Y.F.; Zhao, L.M.; Zhang, H.; Shen, D.Y. Evidence of dark solitons in all-normal-dispersion-fiber lasers. Phys. Rev. A 2013, 88, 013849. [Google Scholar] [CrossRef]
- Fermann, M.E.; Hartl, I. Ultrafast Fiber Laser Technology. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 191–206. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, S.; Wang, J.; Li, L.; Bai, Z.; Wang, Y.; Lv, Z. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers. Mater. Today Phys. 2022, 23, 100622. [Google Scholar] [CrossRef]
- Wang, M.; Huang, Y.; Song, Z.; Wei, J.; Pei, J.; Ruan, S. Two-micron all-fiberized passively mode-locked fiber lasers with high-energy nanosecond pulse. High Power Laser Sci. Eng. 2020, 8, e14. [Google Scholar] [CrossRef]
- Gene, J.; Yeom, D.-I.; Kim, S.K.; Lim, S.D. Long-cavity mode-locked thulium-doped fiber laser for high pulse energy. Opt. Laser Technol. 2020, 136, 106739. [Google Scholar] [CrossRef]
- Yu, Q.; Qi, Y.; Bai, Z.; Ding, J.; Yan, B.; Wang, Y.; Lu, Z.; Yan, D. L-band of ~1.6 μm tunable multi-wavelength mode-locked Er-doped fiber laser with an MMF- FMF based structure. Opt. Fiber Technol. 2024, 84, 103762. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, M.; Qi, Y.; Luan, N.; Bai, Z.; Ding, J.; Yan, B.; Wang, Y.; Lu, Z. Tunable Single and Multi-Wavelength Er-Doped Mode-Locked Fiber Laser Based on GIMF-PCF-GIMF. IEEE Photon-Technol. Lett. 2023, 35, 1043–1046. [Google Scholar] [CrossRef]
- Shang, J.; Feng, J.; Li, T.; Feng, T.; Liu, Y.; Zhao, S.; Zhao, Y.; Song, Y. A Watt-level noise-like Tm-doped fiber oscillator by nonlinear polarization rotation. Appl. Phys. Express 2021, 14, 052001. [Google Scholar] [CrossRef]
- Lu, Y.; Gu, X. All-fiber passively Q-switched fiber laser with a Sm-doped fiber saturable absorber. Opt. Express 2013, 21, 1997–2002. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gu, X. Kilowatt peak power pulses from a passively Q-switched Yb-doped fiber laser with a smaller-core Yb-doped fiber as a saturable absorber. IEEE Photon-J. 2014, 6, 1–7. [Google Scholar] [CrossRef]
- Tao, M.; Wu, J.; Peng, J.; Wu, Y.; Yang, P.; Ye, X. Experimental demonstration of an Er-doped fiber ring laser mode-locked with a Tm–Ho co-doped fiber saturable absorber. Laser Phys. 2013, 23, 085102. [Google Scholar] [CrossRef]
- Latiff, A.; Kadir, N.; Ismail, E.; Shamsuddin, H.; Ahmad, H.; Harun, S. All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber. Opt. Commun. 2017, 389, 29–34. [Google Scholar] [CrossRef]
- Zhang, P.; Nizamani, B.; Najm, M.M.; Dimyati, K.; Yasin, M.; Harun, S.W. Self-starting triple-wavelength vector dark soliton with a bismuth-doped fiber saturable absorber. Opt. Lett. 2021, 46, 3336–3339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Dimyati, K.; Nizamani, B.; Najm, M.M.; Yasin, M.; Harun, S.W. Ultrashort pulse generation in All-fiber Er-bium-doped fiber cavity with thulium doped fiber saturable absorber. Opt. Laser Technol. 2022, 149, 107888. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, L.; Jiang, H.; Liu, N.; Yang, K.; Xian, T.; Zhan, L. Bright-Dark Pulse Pair in a Passively Mode-Locked Fiber Laser Based on Thulium-Doped Fiber. IEEE Photonics Technol. Lett. 2024, 36, 429–432. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Q.-Y.; Li, L.; Jin, L.; Chen, S.-C. Generation of dark solitons in a self-mode-locked Tm-Ho doped fiber laser. Infrared Phys. Technol. 2022, 121, 104043. [Google Scholar] [CrossRef]
- Afanasyev, V.V.; Kivshar, Y.S.; Konotop, V.V.; Serkin, V.N. Dynamics of coupled dark and bright optical solitons. Opt. Lett. 1989, 14, 805–807. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, S.; He, C.; Lin, X. Vector pure-quartic soliton molecule fiber laser. Chaos Solitons Fractals 2023, 175, 113978. [Google Scholar] [CrossRef]
- Franco, P.; Midrio, M.; Tozzato, A.; Romagnoli, M.; Fontana, F. Characterization and optimization criteria for filterless erbium-doped fiber lasers. J. Opt. Soc. Am. B 1994, 11, 1090–1097. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, Z.; Yao, Y.; Xu, X.; Chen, L.; Zhao, Y.; Xu, K. Three-component bright–dark–bright vector pulse fiber laser basedonMoS2 saturable absorber. Opt. Commun. 2021, 498, 127231. [Google Scholar] [CrossRef]
- Nady, A.; Semaan, G.; Kemel, M.; Salhi, M.; Sanchez, F. Polarization-color domain walls in fiber ring lasers. J. Light. Technol. 2020, 38, 6905–6910. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Yu, Q.; Sun, W.; Gao, Y.; Zhang, Y.; Bai, Z.; Ding, J.; Yan, B.; Wang, Y.; Lu, Z.; et al. Generation of Bright–Dark Pulse Pairs in the Er-Doped Mode-Locked Fiber Laser Based on Doped Fiber Saturable Absorber. Photonics 2024, 11, 534. https://doi.org/10.3390/photonics11060534
Qi Y, Yu Q, Sun W, Gao Y, Zhang Y, Bai Z, Ding J, Yan B, Wang Y, Lu Z, et al. Generation of Bright–Dark Pulse Pairs in the Er-Doped Mode-Locked Fiber Laser Based on Doped Fiber Saturable Absorber. Photonics. 2024; 11(6):534. https://doi.org/10.3390/photonics11060534
Chicago/Turabian StyleQi, Yaoyao, Qixing Yu, Wei Sun, Yaqing Gao, Yu Zhang, Zhenxu Bai, Jie Ding, Bingzheng Yan, Yulei Wang, Zhiwei Lu, and et al. 2024. "Generation of Bright–Dark Pulse Pairs in the Er-Doped Mode-Locked Fiber Laser Based on Doped Fiber Saturable Absorber" Photonics 11, no. 6: 534. https://doi.org/10.3390/photonics11060534
APA StyleQi, Y., Yu, Q., Sun, W., Gao, Y., Zhang, Y., Bai, Z., Ding, J., Yan, B., Wang, Y., Lu, Z., & Yan, D. (2024). Generation of Bright–Dark Pulse Pairs in the Er-Doped Mode-Locked Fiber Laser Based on Doped Fiber Saturable Absorber. Photonics, 11(6), 534. https://doi.org/10.3390/photonics11060534