Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators
Abstract
:1. Introduction
2. Monte Carlo Simulation
3. Experiments
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Park, K.; Yi, J.; Yoon, S.-Y.; Park, S.M.; Kim, J.; Shin, H.-B.; Biswas, S.; Yoo, G.Y.; Moon, S.-H.; Kim, J.; et al. Luminescent solar concentrator efficiency enhanced via nearly lossless propagation pathways. Nat. Photonics 2024, 18, 177–185. [Google Scholar] [CrossRef]
- Siripurapu, M.; Meinardi, F.; Brovelli, S.; Carulli, F. Environmental Effects on the Performance of Quantum Dot Luminescent Solar Concentrators. ACS Photonics 2023, 10, 2987–2993. [Google Scholar] [CrossRef] [PubMed]
- Meinardi, F.; Bruni, F.; Castellan, C.; Meucci, M.; Umair, A.M.; La Rosa, M.; Catani, J.; Brovelli, S. Certification Grade Quantum Dot Luminescent Solar Concentrator Glazing with Optical Wireless Communication Capability for Connected Sustainable Architecture. Adv. Energy Mater. 2024, 14, 2304006. [Google Scholar] [CrossRef]
- Weber, W.H.; Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 1976, 15, 2299–2300. [Google Scholar] [CrossRef]
- Li, X.; Qi, J.; Zhu, J.; Jia, Y.; Liu, Y.; Li, Y.; Liu, H.; Li, G.; Wu, K. Low-Loss, High-Transparency Luminescent Solar Concentrators with a Bioinspired Self-Cleaning Surface. J. Phys. Chem. Lett. 2022, 13, 9177–9185. [Google Scholar] [CrossRef] [PubMed]
- Gungor, K.; Du, J.; Klimov, V.I. General Trends in the Performance of Quantum Dot Luminescent Solar Concentrators (LSCs) Revealed Using the “Effective LSC Quality Factor”. ACS Energy Lett. 2022, 7, 1741–1749. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Lai, Y.; Zhao, X.; Zheng, K.; Wang, R.; Zhou, Y. Highly efficient and stable tandem luminescent solar concentrators based on carbon dots and CuInSe2−xSx/ZnS quantum dots. Nanoscale 2024, 16, 188–194. [Google Scholar] [CrossRef]
- Wang, J.; Cai, T.; Chen, O. Cesium Copper Halide Perovskite Nanocrystal-Based Photon-Managing Devices for Enhanced Ultraviolet Photon Harvesting. Nano Lett. 2023, 23, 4367–4374. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, P.; Wilson, L.J.; Subbiah, J.; Yang, H.; Mulvaney, P.; Jones, D.J.; Ghiggino, K.P.; Wong, W.W.H. High-Performance Large-Area Luminescence Solar Concentrator Incorporating a Donor–Emitter Fluorophore System. ACS Energy Lett. 2019, 4, 1839–1844. [Google Scholar] [CrossRef]
- Rosadoni, E.; Bellina, F.; Lessi, M.; Micheletti, C.; Ventura, F.; Pucci, A. Y-shaped alkynylimidazoles as effective push-pull fluorescent dyes for luminescent solar concentrators (LSCs). Dye. Pigment. 2022, 201, 110262. [Google Scholar] [CrossRef]
- Lee, H.J.; Im, S.; Jung, D.; Kim, K.; Chae, J.A.; Lim, J.; Park, J.W.; Shin, D.; Char, K.; Jeong, B.G.; et al. Coherent heteroepitaxial growth of I-III-VI2 Ag(In,Ga)S2 colloidal nanocrystals with near-unity quantum yield for use in luminescent solar concentrators. Nat. Commun. 2023, 14, 3779. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, S.S.; Jokar, E.; Chiang, Y.-T.; Kuan, C.-H.; Khodakarami, K.; Hosseini, Z.; Chen, F.-C.; Diau, E.W.-G. Mn-Doped Organic–Inorganic Perovskite Nanocrystals for a Flexible Luminescent Solar Concentrator. ACS Appl. Energy Mater. 2021, 4, 10565–10573. [Google Scholar] [CrossRef]
- Liu, G.; Mazzaro, R.; Wang, Y.; Zhao, H.; Vomiero, A. High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots. Nano Energy 2019, 60, 119–126. [Google Scholar] [CrossRef]
- Dhamo, L.; Carulli, F.; Nickl, P.; Wegner, K.D.; Hodoroaba, V.D.; Würth, C.; Brovelli, S.; Resch-Genger, U. Efficient Luminescent Solar Concentrators Based on Environmentally Friendly Cd-Free Ternary AIS/ZnS Quantum Dots. Adv. Opt. Mater. 2021, 9, 2100587. [Google Scholar] [CrossRef]
- Wu, K.; Li, H.; Klimov, V.I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 2018, 12, 105–110. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Zhao, X.; Vomiero, A.; Gong, X. High-loading of organosilane-grafted carbon dots in high-performance luminescent solar concentrators with ultrahigh transparency. Nano Energy 2023, 115, 108674. [Google Scholar] [CrossRef]
- Wu, Y.; Zhan, Y.; Xin, W.; Cao, W.; Li, J.; Chen, M.; Jiang, X.; Wang, J.; Sun, Z. Highly Emissive Carbon Dots/Organosilicon Composites for Efficient and Stable Luminescent Solar Concentrators. ACS Appl. Energy Mater. 2022, 5, 1781–1792. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Zhao, X.; Gong, X. Boosting efficiency of luminescent solar concentrators using ultra-bright carbon dots with large Stokes shift. Nanoscale Horiz 2022, 8, 83–94. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, G.; You, S.; Camargo, F.V.A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; et al. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ. Sci. 2021, 14, 396–406. [Google Scholar] [CrossRef]
- You, Y.; Tong, X.; Imran Channa, A.; Zhi, H.; Cai, M.; Zhao, H.; Xia, L.; Liu, G.; Zhao, H.; Wang, Z. High-efficiency luminescent solar concentrators based on Composition-tunable Eco-friendly Core/shell quantum dots. Chem. Eng. J. 2023, 452, 139490. [Google Scholar] [CrossRef]
- Zhi, H.; Tong, X.; You, Y.; Channa, A.I.; Li, X.; Wu, J.; Selopal, G.S.; Wang, Z.M. Engineering the Optical Properties of Eco-Friendly CuGaS2/ZnS and CuGaInS2/ZnS Core/Shell Quantum Dots for High-Performance Tandem Luminescent Solar Concentrators. Sol. RRL 2023, 7, 2300641. [Google Scholar] [CrossRef]
- Cai, T.; Wang, J.; Li, W.; Hills-Kimball, K.; Yang, H.; Nagaoka, Y.; Yuan, Y.; Zia, R.; Chen, O. Mn(2+)/Yb(3+) Codoped CsPbCl(3) Perovskite Nanocrystals with Triple-Wavelength Emission for Luminescent Solar Concentrators. Adv. Sci. 2020, 7, 2001317. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Xu, W.; Zhou, D.; Ji, Y.; Wang, Y.; Sun, R.; Bai, X.; Zhou, J.; Song, H. Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of Silicon photodetectors with external quantum efficiency exceeding 70%. Nano Energy 2020, 78, 105278. [Google Scholar] [CrossRef]
- Zeng, M.; Artizzu, F.; Liu, J.; Singh, S.; Locardi, F.; Mara, D.; Hens, Z.; Van Deun, R. Boosting the Er3+ 1.5 μm Luminescence in CsPbCl3 Perovskite Nanocrystals for Photonic Devices Operating at Telecommunication Wavelengths. ACS Appl. Nano Mater. 2020, 3, 4699–4707. [Google Scholar] [CrossRef]
- Gao, D.; Chen, B.; Sha, X.; Zhang, Y.; Chen, X.; Wang, L.; Zhang, X.; Zhang, J.; Cao, Y.; Wang, Y.; et al. Near infrared emissions from both high efficient quantum cutting (173%) and nearly-pure-color upconversion in NaY(WO4)2:Er3+/Yb3+ with thermal management capability for silicon-based solar cells. Light: Sci. Appl. 2024, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Milstein, T.J.; Kroupa, D.M.; Gamelin, D.R. Picosecond Quantum Cutting Generates Photoluminescence Quantum Yields Over 100% in Ytterbium-Doped CsPbCl3 Nanocrystals. Nano Lett. 2018, 18, 3792–3799. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Z.; Tang, C.; Zhang, X.; Lee, B.R.; Li, X.; Li, D.; Zhang, Y.; Hu, J.; Zhao, D.; et al. Near-Infrared LEDs Based on Quantum Cutting-Activated Electroluminescence of Ytterbium Ions. Nano Lett. 2023, 23, 82–90. [Google Scholar] [CrossRef]
- Xu, W.; Liu, J.; Dong, B.; Huang, J.; Shi, H.; Xue, X.; Liu, M. Atomic-scale imaging of ytterbium ions in lead halide perovskites. Sci. Adv. 2023, 9, eadi7931. [Google Scholar] [CrossRef]
- Luo, X.; Ding, T.; Liu, X.; Liu, Y.; Wu, K. Quantum-Cutting Luminescent Solar Concentrators Using Ytterbium-Doped Perovskite Nanocrystals. Nano Lett. 2019, 19, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Milstein, T.J.; Kluherz, K.T.; Kroupa, D.M.; Erickson, C.S.; De Yoreo, J.J.; Gamelin, D.R. Anion Exchange and the Quantum-Cutting Energy Threshold in Ytterbium-Doped CsPb(Cl1–xBrx)3 Perovskite Nanocrystals. Nano Lett. 2019, 19, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Milstein, T.J.; Roh, J.Y.D.; Jacoby, L.M.; Crane, M.J.; Sommer, D.E.; Dunham, S.T.; Gamelin, D.R. Ubiquitous Near-Band-Edge Defect State in Rare-Earth-Doped Lead-Halide Perovskites. Chem. Mater. 2022, 34, 3759–3769. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, Y.; Zuo, C.; Zhang, F.; Huang, Z.; Jiang, L.; Lai, Y.; Ding, L.; Liu, F. Ambient air-processed Cu2ZnSn(S,Se)4 solar cells with over 12% efficiency. Sci. Bull. 2021, 66, 880–883. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Zuo, C.; Ren, S.; Zhao, D.; Ding, L. Low-bandgap Sn–Pb perovskite solar cells. J. Semicond. 2021, 42, 060202. [Google Scholar] [CrossRef]
- Steiner, M.A.; France, R.M.; Buencuerpo, J.; Geisz, J.F.; Nielsen, M.P.; Pusch, A.; Olavarria, W.J.; Young, M.; Ekins-Daukes, N.J. High Efficiency Inverted GaAs and GaInP/GaAs Solar Cells With Strain-Balanced GaInAs/GaAsP Quantum Wells. Adv. Energy Mater. 2020, 11, 2002874. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Luminescence solar concentrators: A technology update. Nano Energy 2023, 109, 108269. [Google Scholar] [CrossRef]
- Cao, M.; Zhao, X.; Gong, X. Achieving High-Efficiency Large-Area Luminescent Solar Concentrators. JACS Au 2023, 3, 25–35. [Google Scholar] [CrossRef]
- Bradshaw, L.R.; Knowles, K.E.; McDowall, S.; Gamelin, D.R. Nanocrystals for Luminescent Solar Concentrators. Nano Lett. 2015, 15, 1315–1323. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Q.; Li, W.; Luo, X. Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators. Photonics 2024, 11, 553. https://doi.org/10.3390/photonics11060553
Nie Q, Li W, Luo X. Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators. Photonics. 2024; 11(6):553. https://doi.org/10.3390/photonics11060553
Chicago/Turabian StyleNie, Qi, Wenqing Li, and Xiao Luo. 2024. "Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators" Photonics 11, no. 6: 553. https://doi.org/10.3390/photonics11060553
APA StyleNie, Q., Li, W., & Luo, X. (2024). Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators. Photonics, 11(6), 553. https://doi.org/10.3390/photonics11060553