Enhancing a Display’s Sunlight Readability with Tone Mapping
Abstract
:1. Introduction
2. Tone Mapping
2.1. Tone Mapping for DICOM GSDF
2.2. Auto-Brightness Control
2.3. Mini-LED Backlit LCD Model
2.4. Image Quality
2.5. Clipping Effect
2.6. Color Shift
3. Optical See-Through Displays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yang, Q.; Li, Y.; Yang, Z.; Wang, Z.; Liang, H.; Wu, S.-T. Waveguide-based augmented reality displays: Perspectives and challenges. eLight 2023, 3, 24. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Chen, P.-J.; Liang, X.; Lin, Y.-H. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices. Sci. Rep. 2017, 7, 433. [Google Scholar] [CrossRef] [PubMed]
- Blankenbach, K. Advanced automotive display measurements: Selected challenges and solutions. J. Soc. Inf. Disp. 2018, 26, 517–525. [Google Scholar] [CrossRef]
- Huang, Y.; Hsiang, E.-L.; Deng, M.-Y.; Wu, S.-T. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives. Light Sci. Appl. 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.S.; Klubek, K.P.; Tang, C.W. High-efficiency tandem organic light-emitting diodes. Appl. Phys. Lett. 2004, 84, 167–169. [Google Scholar] [CrossRef]
- Fung, M.K.; Li, Y.Q.; Liao, L.S. Tandem organic light-emitting diodes. Adv. Mater. 2016, 28, 10381–10408. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Byun, C.-W.; Kang, C.-M.; Shin, J.-W.; Kwon, B.-H.; Choi, S.; Cho, N.S.; Lee, J.-I.; Kim, H.; Lee, J.H. White organic light-emitting diode (OLED) microdisplay with a tandem structure. J. Inf. Disp. 2019, 20, 249–255. [Google Scholar] [CrossRef]
- Swayamprabha, S.S.; Dubey, D.K.; Shahnawaz; Yadav, R.A.K.; Nagar, M.R.; Sharma, A.; Tung, F.C.; Jou, J.H. Approaches for long lifetime organic light emitting diodes. Adv. Sci. 2021, 8, 20200254. [Google Scholar]
- Chen, H.-W.; Lee, J.-H.; Lin, B.-Y.; Chen, S.; Wu, S.-T. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives. Light Sci. Appl. 2018, 7, 17168. [Google Scholar] [CrossRef]
- Lin, C.-C.; Wu, Y.-R.; Kuo, H.-C.; Wong, M.S.; DenBaars, S.P.; Nakamura, S.; Pandey, A.; Mi, Z.; Tian, P.; Ohkawa, K.; et al. The micro-LED roadmap: Status quo and prospects. J. Phys. Photon 2023, 5, 042502. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, S.; Danesh, C. MicroLED technologies and applications: Characteristics, fabrication, progress, and challenges. J. Phys. D Appl. Phys. 2021, 54, 123001. [Google Scholar] [CrossRef]
- Gao, Z.; Ning, H.; Yao, R.; Xu, W.; Zou, W.; Guo, C.; Luo, D.; Xu, H.; Xiao, J. Mini-LED backlight technology progress for liquid crystal display. Crystals 2022, 12, 313. [Google Scholar] [CrossRef]
- Gu, M.; Xu, D.; Calayir, V.; Son, M.; Yin, V.; Qi, J. 55-1: Invited Paper: Apple Liquid Retina XDR Displays with Mini-LEDs. SID Symp. Dig. Tech. Pap. 2023, 54, 788–791. [Google Scholar] [CrossRef]
- Schmidt, M.; Grüning, M.; Ritter, J.; Hudak, A.; Xu, C. Impact of high-resolution matrix backlight on local-dimming performance and its characterization. J. Inf. Disp. 2019, 20, 95–104. [Google Scholar] [CrossRef]
- Zhai, J.; Llach, J. Non-uniform backlighting computation for high dynamic range displays. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 4005–4008. [Google Scholar]
- Xu, C.; Schmidt, M.; Lahr, T.; Weber, M. Dynamic Backlights for Automotive LCDs. Inf. Disp. 2018, 34, 12–31. [Google Scholar] [CrossRef]
- Zheng, B.; Deng, Z.; Zheng, J.; Wu, L.; Yang, W.; Lin, Z.; Wang, H.; Shen, P.; Li, J. 41-2: Invited Paper: An advanced high-dynamic-range LCD for smartphones. SID Symp. Dig. Tech. Pap. 2019, 50, 566–568. [Google Scholar] [CrossRef]
- Zhou, S.-S.; Gao, H.; Ruan, Y.-J.; Zhuang, J.-B.; Lu, Y.-J.; Chen, Z.; Guo, W.-J. Impacts of local dimming algorithms on the halo effect in LCD with local dimming Mini-LED backlight. IEEE Photonics J. 2024, 16, 1–5. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, Z.; Hsiang, E.-L.; Yang, Q.; Nilsen, K.; Huang, Y.-H.; Lin, K.-H.; Wu, S.-T. Human Eye Contrast Sensitivity to Vehicle Displays under Strong Ambient Light. Crystals 2023, 13, 1384. [Google Scholar] [CrossRef]
- Bernard, K.; Ishan, C. Waveguide combiners for mixed reality headsets: A nanophotonics design perspective. Nanophotonics 2021, 10, 41–74. [Google Scholar]
- Mantiuk, R.; Daly, S.; Kerofsky, L. Display adaptive tone mapping. ACM Trans. Graph. 2008, 27, 68. [Google Scholar] [CrossRef]
- Monobe, Y.; Yamashita, H.; Kurosawa, T.; Kotera, H. Fadeless image projection preserving local contrast under ambient light. Color Imaging Conf. 2004, 12, 130–135. [Google Scholar] [CrossRef]
- Song, Q.; Cosman, P.C. Luminance enhancement and detail preservation of images and videos adapted to ambient illumination. IEEE Trans. Image Process. 2018, 27, 4901–4915. [Google Scholar] [CrossRef]
- Chang, Y.; Jung, C.; Ke, P.; Song, H.; Hwang, J. Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access 2018, 6, 11782–11792. [Google Scholar] [CrossRef]
- Devlin, K.; Chalmers, A.; Reinhard, E. Visual calibration and correction for ambient illumination. ACM T. Appl. Percept. 2006, 3, 429–452. [Google Scholar] [CrossRef]
- Kykta, M. Gamma, brightness, and luminance considerations for HD displays. Inf. Disp. 2009, 25, 20–25. [Google Scholar] [CrossRef]
- Blankenbach, K.; Sycev, A.; Kurbatfinski, S.; Zobl, M. Optimizing and evaluating new automotive HMI image enhancement algorithms under bright light conditions using display reflectance characteristics. J. Soc. Inf. Disp. 2014, 22, 267–279. [Google Scholar] [CrossRef]
- Schlick, C. Quantization Techniques for Visualization of High Dynamic Range Pictures; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Yang, Z.; Hsiang, E.-L.; Qian, Y.; Wu, S.-T. Performance comparison between mini-LED backlit LCD and OLED display for 15.6-inch notebook computers. Appl. Sci. 2022, 12, 1239. [Google Scholar] [CrossRef]
- Bauer, J.; Kreuzer, M. Understanding the requirements for automotive displays in ambient light conditions. Inf. Disp. 2016, 32, 14–22. [Google Scholar] [CrossRef]
- International Committee for Display Metrology. Information Display Measurements Standard; Society for Information Display (SID): Campbell, CA, USA, 2012; p. 135. [Google Scholar]
- Hsiang, E.-L.; Yang, Q.; He, Z.; Zou, J.; Wu, S.-T. Halo effect in high-dynamic-range mini-LED backlit LCDs. Opt. Express 2020, 28, 36822–36837. [Google Scholar] [CrossRef]
- Chernov, V.; Alander, J.; Bochko, V. Integer-based accurate conversion between RGB and HSV color spaces. Comput. Electr. Eng. 2015, 46, 328–337. [Google Scholar] [CrossRef]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402. [Google Scholar]
- Bakurov, I.; Buzzelli, M.; Schettini, R.; Castelli, M.; Vanneschi, L. Structural similarity index (SSIM) revisited: A data-driven approach. Expert Syst. Appl. 2022, 189, 116087. [Google Scholar] [CrossRef]
- Bhandary, S.K.; Dhakal, R.; Sanghavi, V.; Verkicharla, P.K. Ambient light level varies with different locations and environmental conditions: Potential to impact myopia. PLoS ONE 2021, 16, e0254027. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Chen, S.-C.; Hsiang, E.-L.; Akimoto, H.; Lin, C.-L.; Wu, S.-T. Enhancing a Display’s Sunlight Readability with Tone Mapping. Photonics 2024, 11, 578. https://doi.org/10.3390/photonics11060578
Qian Y, Chen S-C, Hsiang E-L, Akimoto H, Lin C-L, Wu S-T. Enhancing a Display’s Sunlight Readability with Tone Mapping. Photonics. 2024; 11(6):578. https://doi.org/10.3390/photonics11060578
Chicago/Turabian StyleQian, Yizhou, Sung-Chun Chen, En-Lin Hsiang, Hajime Akimoto, Chih-Lung Lin, and Shin-Tson Wu. 2024. "Enhancing a Display’s Sunlight Readability with Tone Mapping" Photonics 11, no. 6: 578. https://doi.org/10.3390/photonics11060578
APA StyleQian, Y., Chen, S. -C., Hsiang, E. -L., Akimoto, H., Lin, C. -L., & Wu, S. -T. (2024). Enhancing a Display’s Sunlight Readability with Tone Mapping. Photonics, 11(6), 578. https://doi.org/10.3390/photonics11060578