Silicon Carbide Microring Resonators for Integrated Nonlinear and Quantum Photonics Based on Optical Nonlinearities
Abstract
:1. Introduction
1.1. Material and Optical Properties
1.2. Fabrication Technologies: State-of-the-Art and Opportunities
1.2.1. The Ion-Cutting Technique for 4H-SiCOI and 6H-SiCOI
1.2.2. The Wafer Bonding and Thinning Methods
1.3. SiC Microring Resonators
2. Device Design for Efficient Nonlinear Frequency Conversions in Nonlinear Microring Resonators
2.1. Phase Matching Condition for 4H-SiC and 3C-SiC
2.1.1. Dispersion Engineering for Degenerate-Pump FWM
2.1.2. Modal Phase Matching Condition for Silicon Carbide Platforms
2.2. Microring Resonator Design and Analysis for Second-Order Nonlinear Frequency Conversions in the 3C-SiCOI Platform
2.2.1. The -Quasi-Phase Matching Condition
2.2.2. Elliptical Microring Resonators
3. Integrated Nonlinear and Quantum Light Sources
3.1. Third-Order Optical Nonlinearity
3.2. Second-Order Optical Nonlinear Processes
4. Summary and Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cazzanelli, M.; Schilling, J. Second Order Optical Nonlinearity in Silicon by Symmetry Breaking. Appl. Phys. Rev. 2016, 3, 011104. [Google Scholar] [CrossRef]
- Timurdogan, E.; Poulton, C.V.; Byrd, M.J.; Watts, M.R. Electric Field-Induced Second-Order Nonlinear Optical Effects in Silicon Waveguides. Nat. Photonics 2017, 11, 200–206. [Google Scholar] [CrossRef]
- Zhang, Y.; Nauriyal, J.; Song, M.; Baez, M.G.; He, X.; Macdonald, T.; Cardenas, J. Engineered Second-Order Nonlinearity in Silicon Nitride. Opt. Mater. Express 2023, 13, 237–246. [Google Scholar] [CrossRef]
- Porcel, M.A.G.; Mak, J.; Taballione, C.; Schermerhorn, V.K.; Epping, J.P.; van der Slot, P.J.M.; Boller, K.-J. Photo-Induced Second-Order Nonlinearity in Stoichiometric Silicon Nitride Waveguides. Opt. Express 2017, 25, 33143–33159. [Google Scholar] [CrossRef]
- Lu, X.; Moille, G.; Rao, A.; Westly, D.A.; Srinivasan, K. Efficient Photoinduced Second-Harmonic Generation in Silicon Nitride Photonics. Nat. Photonics 2021, 15, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Nitiss, E.; Hu, J.; Stroganov, A.; Brès, C.-S. Optically Reconfigurable Quasi-Phase-Matching in Silicon Nitride Microresonators. Nat. Photonics 2022, 16, 134–141. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, M.; Hong, S.; Zhao, Y.; Zhang, L.; Wang, Y.; Chen, H.; Yu, Z.; Gao, S.; Dai, D. High-Efficiency Four-Wave Mixing in Low-Loss Silicon Photonic Spiral Waveguides beyond the Singlemode Regime. Opt. Express 2022, 30, 16362–16373. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Nitiss, E.; He, J.; Liu, J.; Yakar, O.; Weng, W.; Kippenberg, T.J.; Brès, C.S. Photo-induced cascaded harmonic and comb generation in silicon nitride microresonators. Sci. Adv. 2022, 8, eadd8252. [Google Scholar] [CrossRef]
- Liu, J.; Raja, A.S.; Karpov, M.; Ghadiani, B.; Pfeiffer, M.H.P.; Du, B.; Engelsen, N.J.; Guo, H.; Zervas, M.; Kippenberg, T.J. Ultralow-power chip-based soliton microcombs for photonic integration. Optica 2018, 5, 1347–1353. [Google Scholar]
- Xiang, C.; Jin, W.; Bowers, J.E. Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photonics Res. 2022, 10, A82–A96. [Google Scholar] [CrossRef]
- Churaev, M.; Wang, R.N.; Riedhauser, A.; Snigirev, V.; Blésin, T.; Möhl, C.; Anderson, M.H.; Siddharth, A.; Popoff, Y.; Drechsler, U.; et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 2023, 14, 3499. [Google Scholar] [CrossRef]
- de Beeck, C.O.; Haq, B.; Elsinger, L.; Gocalinska, A.; Pelucchi, E.; Corbett, B.; Roelkens, G.; Kuyken, B. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica 2020, 7, 386–393. [Google Scholar] [CrossRef]
- Park, T.; Stokowski, H.S.; Ansari, V.; McKenna, T.P.; Hwang, A.Y.; Fejer, M.M.; Safavi-Naeini, A.H. High-Efficiency Second Harmonic Generation of Blue Light on Thin-Film Lithium Niobate. Opt. Lett. 2022, 47, 2706–2709. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.J.; Mishra, J.; Chen, C.; Zhu, D.; Shams-Ansari, A.; Langrock, C.; Sinclair, N.; Wong, F.N.C.; Fejer, M.M.; Lončar, M. Spectrally Separable Photon-Pair Generation in Dispersion Engineered Thin-Film Lithium Niobate. Opt. Lett. 2022, 47, 2830–2833. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Surya, J.B.; Liu, X.; Bruch, A.W.; Gong, Z.; Xu, Y.; Tang, H.X. Periodically Poled Thin-Film Lithium Niobate Microring Resonators with a Second-Harmonic Generation Efficiency of 250,000%/W. Optica 2019, 6, 1455–1460. [Google Scholar] [CrossRef]
- Bruch, A.W.; Liu, X.; Guo, X.; Surya, J.B.; Gong, Z.; Zhang, L.; Wang, J.; Yan, J.; Tang, H.X. 17 000%/W Second-Harmonic Conversion Efficiency in Single-Crystalline Aluminum Nitride Microresonators. Appl. Phys. Lett. 2018, 113, 131102. [Google Scholar] [CrossRef]
- Alden, D.; Troha, T.; Kirste, R.; Mita, S.; Guo, Q.; Hoffmann, A.; Zgonik, M.; Collazo, R.; Sitar, Z. Quasi-Phase-Matched Second Harmonic Generation of UV Light Using AlN Waveguides. Appl. Phys. Lett. 2019, 114, 103504. [Google Scholar] [CrossRef]
- Guo, X.; Zou, C.-L.; Tang, H.X. Second-Harmonic Generation in Aluminum Nitride Microrings with 2500%/W Conversion Efficiency. Optica 2016, 3, 1126–1131. [Google Scholar] [CrossRef]
- Guo, X.; Zou, C.; Schuck, C.; Jung, H.; Cheng, R.; Tang, H.X. Parametric Down-Conversion Photon-Pair Source on a Nanophotonic Chip. Light Sci. Appl. 2017, 6, e16249. [Google Scholar] [CrossRef]
- Chowdhury, A.; Ng, H.M.; Bhardwaj, M.; Weimann, N.G. Second-Harmonic Generation in Periodically Poled GaN. Appl. Phys. Lett. 2003, 83, 1077–1079. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.; Ryu, K.K.; Schuck, C.; Fong, K.Y.; Palacios, T.; Tang, H.X. Integrated GaN Photonic Circuits on Silicon (100) for Second Harmonic Generation. Opt. Express 2011, 19, 10462–10470. [Google Scholar] [CrossRef]
- Kuo, P.S.; Solomon, G.S. On-and off-Resonance Second-Harmonic Generation in GaAs Microdisks. Opt. Express 2011, 19, 16898–16918. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.S.; Bravo-Abad, J.; Solomon, G.S. Second-Harmonic Generation Using-Quasi-Phasematching in a GaAs Whispering-Gallery-Mode Microcavity. Nat. Commun. 2014, 5, 3109. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chak, P.; Bristow, A.D.; van Driel, H.M.; Iyer, R.; Aitchison, J.S.; Smirl, A.L.; Sipe, J.E. Enhanced Second-Harmonic Generation in AlGaAs Microring Resonators. Opt. Lett. 2007, 32, 826–828. [Google Scholar] [CrossRef] [PubMed]
- May, S.; Kues, M.; Clerici, M.; Sorel, M. Second-Harmonic Generation in AlGaAs-on-Insulator Waveguides. Opt. Lett. 2019, 44, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Placke, M.; Schlegel, J.; Mann, F.; Della Casa, P.; Thies, A.; Weyers, M.; Tränkle, G.; Ramelow, S. Telecom-Band Spontaneous Parametric Down-Conversion in AlGaAs-on-Insulator Waveguides. Laser Photonics Rev. 2024, 2301293. [Google Scholar] [CrossRef]
- Mobini, E.; Espinosa, D.H.G.; Vyas, K.; Dolgaleva, K. AlGaAs Nonlinear Integrated Photonics. Micromachines 2022, 13, 991. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Song, B.-S.; Jeon, S.; Upham, J.; Tanaka, Y.; Asano, T.; Noda, S. Second-Harmonic Generation in a Silicon-Carbide-Based Photonic Crystal Nanocavity. Opt. Lett. 2014, 39, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Q.; Wang, J.; Poon, A.W. An Integrated 3C-Silicon Carbide-on-Insulator Photonic Platform for Nonlinear and Quantum Light Sources. Commun. Phys. 2024, 7, 125. [Google Scholar] [CrossRef]
- Lukin, D.M.; Dory, C.; Guidry, M.A.; Yang, K.Y.; Mishra, S.D.; Trivedi, R.; Radulaski, M.; Sun, S.; Vercruysse, D.; Ahn, G.H. 4H-Silicon-Carbide-on-Insulator for Integrated Quantum and Nonlinear Photonics. Nat. Photonics 2020, 14, 330–334. [Google Scholar] [CrossRef]
- Kuroiwa, Y.; Matsushita, Y.; Oba, F. Unraveling Crystal Symmetry and Strain Effects on Electronic Band Structures of SiC Polytypes. AIP Adv. 2020, 10, 105014. [Google Scholar] [CrossRef]
- Elasser, A.; Chow, T.P. Silicon Carbide Benefits and Advantages for Power Electronics Circuits and Systems. Proc. IEEE 2002, 90, 969–986. [Google Scholar] [CrossRef]
- Li, N.; Ho, C.P.; Zhu, S.; Fu, Y.H.; Zhu, Y.; Lee, L.Y.T. Aluminium Nitride Integrated Photonics: A Review. Nanophotonics 2021, 10, 2347–2387. [Google Scholar] [CrossRef]
- Gardes, F.; Shooa, A.; De Paoli, G.; Skandalos, I.; Ilie, S.; Rutirawut, T.; Talataisong, W.; Faneca, J.; Vitali, V.; Hou, Y. A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits. Sensors 2022, 22, 4227. [Google Scholar] [CrossRef] [PubMed]
- Beliaev, L.Y.; Shkondin, E.; Lavrinenko, A.V.; Takayama, O. Optical, Structural and Composition Properties of Silicon Nitride Films Deposited by Reactive Radio-Frequency Sputtering, Low Pressure and Plasma-Enhanced Chemical Vapor Deposition. Thin Solid Films 2022, 763, 139568. [Google Scholar] [CrossRef]
- Bakin, A.S.; Dorozhkin, S.I.; Zubrilov, A.S. 6H-and 4H-Silicon Carbide for Device Applications. In Proceedings of the 1998 Fourth International High Temperature Electronics Conference. HITEC (Cat. No. 98EX145), Albuquerque, NM, USA, 14–18 June 1998; pp. 253–256. [Google Scholar]
- Wang, S.; Zhan, M.; Wang, G.; Xuan, H.; Zhang, W.; Liu, C.; Xu, C.; Liu, Y.; Wei, Z.; Chen, X. 4H-SiC: A New Nonlinear Material for Midinfrared Lasers. Laser Photonics Rev. 2013, 7, 831–838. [Google Scholar] [CrossRef]
- Wu, X.; Fan, T.; Eftekhar, A.A.; Adibi, A. High-Q Microresonators Integrated with Microheaters on a 3C-SiC-on-Insulator Platform. Opt. Lett. 2019, 44, 4941–4944. [Google Scholar] [CrossRef]
- Leidinger, M.; Fieberg, S.; Waasem, N.; Kühnemann, F.; Buse, K.; Breunig, I. Comparative Study on Three Highly Sensitive Absorption Measurement Techniques Characterizing Lithium Niobate over Its Entire Transparent Spectral Range. Opt. Express 2015, 23, 21690–21705. [Google Scholar] [CrossRef]
- Li, H.H. Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives. J. Phys. Chem. Ref. Data 1980, 9, 561–658. [Google Scholar] [CrossRef]
- Luke, K.; Okawachi, Y.; Lamont, M.R.E.; Gaeta, A.L.; Lipson, M. Broadband Mid-Infrared Frequency Comb Generation in a Si3N4 Microresonator. Opt. Lett. 2015, 40, 4823–4826. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Q.; Feng, P.X.-L. Single-Crystal 3C-SiC-on-Insulator Platform for Integrated Quantum Photonics. Opt. Express 2021, 29, 1011–1022. [Google Scholar] [CrossRef]
- Singh, S.; Potopowicz, J.R.; Van Uitert, L.G.; Wemple, S.H. Nonlinear Optical Properties of Hexagonal Silicon Carbide. Appl. Phys. Lett. 1971, 19, 53–56. [Google Scholar] [CrossRef]
- Zelmon, D.E.; Small, D.L.; Jundt, D. Infrared Corrected Sellmeier Coefficients for Congruently Grown Lithium Niobate and 5 Mol.% Magnesium Oxide–Doped Lithium Niobate. JOSA B 1997, 14, 3319–3322. [Google Scholar] [CrossRef]
- Pastrňák, J.; Roskovcová, L. Refraction Index Measurements on AlN Single Crystals. Physica Status Solidi (B) 1966, 14, K5–K8. [Google Scholar] [CrossRef]
- Papatryfonos, K.; Angelova, T.; Brimont, A.; Reid, B.; Guldin, S.; Smith, P.R.; Tang, M.; Li, K.; Seeds, A.J.; Liu, H. Refractive Indices of MBE-Grown AlxGa(1 − x)As Ternary Alloys in the Transparent Wavelength Region. AIP Adv. 2021, 11, 025327. [Google Scholar] [CrossRef]
- Sato, H.; Abe, M.; Shoji, I.; Suda, J.; Kondo, T. Accurate Measurements of Second-Order Nonlinear Optical Coefficients of 6H and 4H Silicon Carbide. JOSA B 2009, 26, 1892–1896. [Google Scholar] [CrossRef]
- Wu, I.J.; Guo, G.Y. Second-Harmonic Generation and Linear Electro-Optical Coefficients of SiC Polytypes and Nanotubes. Phys. Rev. B 2008, 78, 035447. [Google Scholar] [CrossRef]
- Powell, K.; Li, L.; Shams-Ansari, A.; Wang, J.; Meng, D.; Sinclair, N.; Deng, J.; Lončar, M.; Yi, X. Integrated Silicon Carbide Electro-Optic Modulator. Nat. Commun. 2022, 13, 1851. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.C.; Nordland, W.A.; Bridenbaugh, P.M. Dependence of Second-harmonic-generation Coefficients of LiNbO3 on Melt Composition. J. Appl. Phys. 1971, 42, 4145–4147. [Google Scholar] [CrossRef]
- Pernice, W.H.P.; Xiong, C.; Schuck, C.; Tang, H.X. Second Harmonic Generation in Phase Matched Aluminum Nitride Waveguides and Micro-Ring Resonators. Appl. Phys. Lett. 2012, 100, 223501. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, Z.; Shi, W. An Investigation of Terahertz Response in Monocrystalline 6H-SiC for Electro-Optic Sampling. Jpn. J. Appl. Phys. 2014, 53, 022601. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.; Cai, L.; Li, Q. Investigation of the Electro-Optic Effect in High-Q 4H-SiC Microresonators. Opt. Lett. 2023, 48, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Turner, E.H. High-frequency Electro-optic Coefficients of Lithium Niobate. Appl. Phys. Lett. 1966, 8, 303–304. [Google Scholar] [CrossRef]
- Berseth, C.; Wuethrich, C.; Reinhart, F.K. The Electro-optic Coefficients of GaAs: Measurements at 1.32 and 1.52 μm and Study of Their Dispersion between 0.9 and 10 μm. J. Appl. Phys. 1992, 71, 2821–2825. [Google Scholar] [CrossRef]
- Xia, J.; Serna, S.; Zhang, W.; Vivien, L.; Cassan, É. Hybrid Silicon Slotted Photonic Crystal Waveguides: How Does Third Order Nonlinear Performance Scale with Slow Light? Photonics Res. 2016, 4, 257–261. [Google Scholar] [CrossRef]
- Krückel, C.J.; Fülöp, A.; Ye, Z.; Andrekson, P.A. Optical Bandgap Engineering in Nonlinear Silicon Nitride Waveguides. Opt. Express 2017, 25, 15370–15380. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Peng, Z.; Ding, P.; Li, L.; Chen, X.; Wei, H.; Tong, Z.; Guo, L. Nonlinear Optical Properties of 6H-SiC and 4H-SiC in an Extensive Spectral Range. Opt. Mater. Express 2021, 11, 1080–1092. [Google Scholar] [CrossRef]
- Shi, X.; Fan, W.; Lu, Y.; Hansen, A.K.; Chi, M.; Yi, A.; Ou, X.; Rottwitt, K.; Ou, H. Polarization and Spatial Mode Dependent Four-Wave Mixing in a 4H-Silicon Carbide Microring Resonator. APL Photonics 2021, 6, 076106. [Google Scholar] [CrossRef]
- Martini, F.; Politi, A. Four Wave Mixing in 3C SiC Ring Resonators. Appl. Phys. Lett. 2018, 112, 251110. [Google Scholar] [CrossRef]
- DeSalvo, R.; Said, A.A.; Hagan, D.J.; Van Stryland, E.W.; Sheik-Bahae, M. Infrared to Ultraviolet Measurements of Two-Photon Absorption and n2 in Wide Bandgap Solids. IEEE J. Quantum Electron. 1996, 32, 1324–1333. [Google Scholar] [CrossRef]
- Shoji, I.; Kondo, T.; Kitamoto, A.; Shirane, M.; Ito, R. Absolute Scale of Second-Order Nonlinear-Optical Coefficients. JOSA B 1997, 14, 2268–2294. [Google Scholar] [CrossRef]
- Dwivedi, S.; Ruocco, A.; Vanslembrouck, M.; Spuesens, T.; Bienstman, P.; Dumon, P.; Van Vaerenbergh, T.; Bogaerts, W. Experimental Extraction of Effective Refractive Index and Thermo-Optic Coefficients of Silicon-on-Insulator Waveguides Using Interferometers. J. Light. Technol. 2015, 33, 4471–4477. [Google Scholar] [CrossRef]
- Arbabi, A.; Goddard, L.L. Measurements of the Refractive Indices and Thermo-Optic Coefficients of Si3N4 and SiOx Using Microring Resonances. Opt. Lett. 2013, 38, 3878–3881. [Google Scholar] [CrossRef] [PubMed]
- Riza, N.A.; Arain, M.; Perez, F. 6-H Single-Crystal Silicon Carbide Thermo-Optic Coefficient Measurements for Ultrahigh Temperatures up to 1273 K in the Telecommunications Infrared Band. J. Appl. Phys. 2005, 98, 103512. [Google Scholar] [CrossRef]
- Shi, X.; Fan, W.; Hansen, A.K.; Chi, M.; Yi, A.; Ou, X.; Rottwitt, K.; Ou, H. Thermal Behaviors and Optical Parametric Oscillation in 4H-Silicon Carbide Integrated Platforms. Adv. Photonics Res. 2021, 2, 2100068. [Google Scholar] [CrossRef]
- Lu, X.; Lee, J.Y.; Feng, P.X.-L.; Lin, Q. Silicon Carbide Microdisk Resonator. Opt. Lett. 2013, 38, 1304–1306. [Google Scholar] [CrossRef] [PubMed]
- Moretti, L.; Iodice, M.; Della Corte, F.G.; Rendina, I. Temperature Dependence of the Thermo-Optic Coefficient of Lithium Niobate, from 300 to 515 K in the Visible and Infrared Regions. J. Appl. Phys. 2005, 98, 036101. [Google Scholar] [CrossRef]
- Della Corte, F.G.; Cocorullo, G.; Iodice, M.; Rendina, I. Temperature Dependence of the Thermo-Optic Coefficient of InP, GaAs, and SiC from Room Temperature to 600 K at the Wavelength of 1.5 Μm. Appl. Phys. Lett. 2000, 77, 1614–1616. [Google Scholar] [CrossRef]
- Wang, C.; Fang, Z.; Yi, A.; Yang, B.; Wang, Z.; Zhou, L.; Shen, C.; Zhu, Y.; Zhou, Y.; Bao, R. High-Q Microresonators on 4H-Silicon-Carbide-on-Insulator Platform for Nonlinear Photonics. Light Sci. Appl. 2021, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Poon, A.W. A 3C-SiC-on-Insulator-Based Integrated Photonic Platform Using an Anodic Bonding Process with Glass Substrates. Micromachines 2023, 14, 399. [Google Scholar] [CrossRef]
- Glass, A.M.; Strait, J. The Photorefractive Effect in Semiconductors. In Photorefractive Materials and Their Applications I: Fundamental Phenomena; Springer: Berlin/Heidelberg, Germany, 2005; pp. 237–262. [Google Scholar]
- Nagai, T.; Fujimura, R.; Shimura, T.; Kuroda, K. Photorefractive Effect in Undoped Aluminum Nitride. Opt. Lett. 2010, 35, 2136–2138. [Google Scholar] [CrossRef]
- Available online: https://www.inseto.co.uk/wafers/soi-wafers/ (accessed on 28 June 2024).
- Available online: https://www.ligentec.com/technology/ (accessed on 28 June 2024).
- Available online: https://www.innotronix.com.cn/?page_id=2745 (accessed on 28 June 2024).
- Available online: https://www.powerwaywafer.com/sic-wafer/sic-wafer-substrate.html (accessed on 28 June 2024).
- Available online: https://www.msesupplies.com/products/mse-pro-4-inch-undoped-3c-sic-epitaxial-wafer-on-silicon-epi-thickness-300nm?variant=39639133585466 (accessed on 28 June 2024).
- Available online: https://www.shalomeo.com/wafers-and-substrates/300-900nm-linbo3-lnoi/product-226.html (accessed on 28 June 2024).
- Lu, T.-J.; Fanto, M.; Choi, H.; Thomas, P.; Steidle, J.; Mouradian, S.; Kong, W.; Zhu, D.; Moon, H.; Berggren, K. Aluminum Nitride Integrated Photonics Platform for the Ultraviolet to Visible Spectrum. Opt. Express 2018, 26, 11147–11160. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.powerwaywafer.com/gaas-wafers/gaas-wafer.html (accessed on 28 June 2024).
- Toma, A.; Brunetti, G.; Saha, N.; Ciminelli, C. Fully reconfigurable photonic filter for flexible payloads. Appl. Sci. 2024, 14, 488. [Google Scholar] [CrossRef]
- Li, A.; Bogaerts, W. An actively controlled silicon ring resonator with a fully tunable Fano resonance. APL Photonics 2017, 2, 096101. [Google Scholar] [CrossRef]
- Errando-Herranz, C.; Niklaus, F.; Stemme, G.; Gylfason, K.B. Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter. Opt. Lett. 2015, 40, 3556–3559. [Google Scholar] [CrossRef]
- Saha, N.; Brunetti, G.; di Toma, A.; Armenise, M.N.; Ciminelli, C. Silicon Photonic Filters: A Pathway from Basics to Applications. Adv. Photonics Res. 2024, 2300343. [Google Scholar] [CrossRef]
- Jiang, H.; Luo, R.; Liang, H.; Chen, X.; Chen, Y.; Lin, Q. Fast Response of Photorefraction in Lithium Niobate Microresonators. Opt. Lett. 2017, 42, 3267–3270. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shen, M.; Lu, J.; Surya, J.B.; Sayem, A.A.; Tang, H.X. Mitigating Photorefractive Effect in Thin-Film Lithium Niobate Microring Resonators. Opt. Express 2021, 29, 5497–5504. [Google Scholar] [CrossRef]
- Cardenas, J.; Zhang, M.; Phare, C.T.; Shah, S.Y.; Poitras, C.B.; Guha, B.; Lipson, M. High Q SiC Microresonators. Opt. Express 2013, 21, 16882–16887. [Google Scholar] [CrossRef]
- Martini, F.; Politi, A. Linear Integrated Optics in 3C Silicon Carbide. Opt. Express 2017, 25, 10735–10742. [Google Scholar] [CrossRef]
- Castelletto, S.; Almutairi, A.F.M.; Kumagai, K.; Katkus, T.; Hayasaki, Y.; Johnson, B.C.; Juodkazis, S. Photoluminescence in Hexagonal Silicon Carbide by Direct Femtosecond Laser Writing. Opt. Lett. 2018, 43, 6077–6080. [Google Scholar] [CrossRef]
- Zhang, B.; He, S.; Yang, Q.; Liu, H.; Wang, L.; Chen, F. Femtosecond Laser Modification of 6H–SiC Crystals for Waveguide Devices. Appl. Phys. Lett. 2020, 116, 111903. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Wang, L.; Chen, F. Fabrication and Polarization Modulation of Waveguides in 4H-SiC Crystals by Femtosecond Laser Direct Writing. Appl. Phys. A 2022, 128, 651. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Song, L.; Sun, C.; Wang, G.; Cheng, Y. Ultra-High-Speed High-Resolution Laser Lithography for Lithium Niobate Integrated Photonics. In Proceedings of the Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXIII, San Francisco, CA, USA, 28 January–3 February 2023; Volume 12411, p. 1241109. [Google Scholar]
- Bruel, M.; Aspar, B.; Charlet, B.; Maleville, C.; Poumeyrol, T.; Soubie, A.; Auberton-Herve, A.J.; Lamure, J.M.; Barge, T.; Metral, F.; et al. “Smart Cut”: A Promising New SOI Material Technology. In Proceedings of the 1995 IEEE International SOI Conference Proceedings, Tucson, AZ, USA, 3–5 October 1995; pp. 178–179. [Google Scholar]
- Di Cioccio, L.; Letertre, F.; Le Tiec, Y.; Papon, A.M.; Jaussaud, C.; Bruel, M. Silicon Carbide on Insulator Formation by the Smart-Cut® Process. Mater. Sci. Eng. B 1997, 46, 349–356. [Google Scholar] [CrossRef]
- Joly, J.-P.; Aspar, B.; Bruel, M.; Di Cioccio, L.; Letertre, F.; Hugonnard-Bruyère, E. New SiC on Insulator Wafers Based on the Smart-Cut® Approach and Their Potential Applications. In Progress in SOI Structures and Devices Operating at Extreme Conditions; Balestra, F., Nazarov, A., Lysenko, V.S., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 31–38. ISBN 978-94-010-0339-1. [Google Scholar]
- Yi, A.; Zheng, Y.; Huang, H.; Lin, J.; Yan, Y.; You, T.; Huang, K.; Zhang, S.; Shen, C.; Zhou, M.; et al. Wafer-Scale 4H-Silicon Carbide-on-Insulator (4H–SiCOI) Platform for Nonlinear Integrated Optical Devices. Opt. Mater. 2020, 107, 109990. [Google Scholar] [CrossRef]
- Song, B.-S.; Yamada, S.; Asano, T.; Noda, S. Demonstration of Two-Dimensional Photonic Crystals Based on Silicon Carbide. Opt. Express 2011, 19, 11084–11089. [Google Scholar] [CrossRef] [PubMed]
- Langpoklakpam, C.; Liu, A.-C.; Chu, K.-H.; Hsu, L.-H.; Lee, W.-C.; Chen, S.-C.; Sun, C.-W.; Shih, M.-H.; Lee, K.-Y.; Kuo, H.-C. Review of Silicon Carbide Processing for Power MOSFET. Crystals 2022, 12, 245. [Google Scholar] [CrossRef]
- Myers-Ward, R.L.; Hobart, K.D.; Daniels, K.M.; Giles, A.J.; Tadjer, M.J.; Luna, L.E.; Kub, F.J.; Pavunny, S.P.; Carter, S.G.; Banks, H.B.; et al. Processing of Cavities in SiC Material for Quantum Technologies. Mater. Sci. Forum 2018, 924, 905–908. [Google Scholar] [CrossRef]
- Shi, X.; Lu, Y.; Chaussende, D.; Rottwitt, K.; Ou, H. Wet-Oxidation-Assisted Chemical Mechanical Polishing and High-Temperature Thermal Annealing for Low-Loss 4H-SiC Integrated Photonic Devices. Materials 2023, 16, 2324. [Google Scholar] [CrossRef]
- Zhou, L.; Yi, A.; Su, Y.; Yang, B.; Zhu, Y.; Cai, J.; Wang, C.; Wu, Z.; Song, S.; Zhang, J.; et al. High-Q Adiabatic Micro-Resonators on a Wafer-Scale Ion-Sliced 4H-Silicon Carbide-on-Insulator Platform. Opt. Lett. 2023, 48, 6279–6282. [Google Scholar] [CrossRef]
- Ko, S.-D.; Hamelin, B.; Yang, J.; Ayazi, F. High-Q Monocrystalline Silicon Carbide Disk Resonators Fabricated Using Drie of Thick SiC-on-Insulator Substrates. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 996–999. [Google Scholar]
- Song, B.-S.; Asano, T.; Jeon, S.; Kim, H.; Chen, C.; Kang, D.D.; Noda, S. Ultrahigh-Q Photonic Crystal Nanocavities Based on 4H Silicon Carbide. Optica 2019, 6, 991–995. [Google Scholar] [CrossRef]
- Guidry, M.A.; Yang, K.Y.; Lukin, D.M.; Markosyan, A.; Yang, J.; Fejer, M.M.; Vučković, J. Optical Parametric Oscillation in Silicon Carbide Nanophotonics. Optica 2020, 7, 1139–1142. [Google Scholar] [CrossRef]
- Cai, L.; Li, J.; Wang, R.; Li, Q. Octave-Spanning Microcomb Generation in 4H-Silicon-Carbide-on-Insulator Photonics Platform. Photonics Res. 2022, 10, 870–876. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.; Cai, L.; Li, Q. Demonstration of 4H-Silicon Carbide on an Aluminum Nitride Integrated Photonic Platform. Opt. Lett. 2024, 49, 2934–2937. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Moradinejad, H.; Wu, X.; Eftekhar, A.A.; Adibi, A. High-Q Integrated Photonic Microresonators on 3C-SiC-on-Insulator (SiCOI) Platform. Opt. Express 2018, 26, 25814–25826. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Wu, X.; Eftekhar, A.A.; Bosi, M.; Moradinejad, H.; Woods, E.V.; Adibi, A. High-Quality Integrated Microdisk Resonators in the Visible-to-near-Infrared Wavelength Range on a 3C-Silicon Carbide-on-Insulator Platform. Opt. Lett. 2020, 45, 153–156. [Google Scholar] [CrossRef]
- Li, J. Nonlinear and Quantum Light Sources Based on an Integrated 3C-Silicon Carbide-on-Insulator Photonic Platform; The Hong Kong University of Science and Technology: Clear Water Bay, Hong Kong, 2023. [Google Scholar]
- Powell, K.; Shams-Ansari, A.; Desai, S.; Austin, M.; Deng, J.; Sinclair, N.; Lončar, M.; Yi, X. High-Q Suspended Optical Resonators in 3C Silicon Carbide Obtained by Thermal Annealing. Opt. Express 2020, 28, 4938–4949. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Takahashi, T.; Okumura, H.; Arai, K.; Yoshida, S. Effect of Reduced Pressure on 3C-SiC Heteroepitaxial Growth on Si by CVD. Chem. Vap. Depos. 2006, 12, 495–501. [Google Scholar] [CrossRef]
- Zheng, Y.; Pu, M.; Yi, A.; Chang, B.; You, T.; Huang, K.; Kamel, A.N.; Henriksen, M.R.; Jørgensen, A.A.; Ou, X. High-Quality Factor, High-Confinement Microring Resonators in 4H-Silicon Carbide-on-Insulator. Opt. Express 2019, 27, 13053–13060. [Google Scholar] [CrossRef] [PubMed]
- Guidry, M.A.; Lukin, D.M.; Yang, K.Y.; Trivedi, R.; Vučković, J. Quantum Optics of Soliton Microcombs. Nat. Photonics 2022, 16, 52–58. [Google Scholar] [CrossRef]
- Zheng, Y.; Pu, M.; Yi, A.; Ou, X.; Ou, H. 4H-SiC Microring Resonators for Nonlinear Integrated Photonics. Opt. Lett. 2019, 44, 5784–5787. [Google Scholar] [CrossRef]
- Fortier, T.; Baumann, E. 20 Years of Developments in Optical Frequency Comb Technology and Applications. Commun. Phys. 2019, 2, 153. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Boyd, R.W., Ed.; Academic: Burlington, NJ, USA, 2008. [Google Scholar]
- Yang, J.; Guidry, M.A.; Lukin, D.M.; Yang, K.; Vučković, J. Inverse-Designed Silicon Carbide Quantum and Nonlinear Photonics. Light Sci. Appl. 2023, 12, 201. [Google Scholar] [CrossRef] [PubMed]
- Moutzouris, K.; Rao, S.V.; Ebrahimzadeh, M.; De Rossi, A.; Calligaro, M.; Ortiz, V.; Berger, V. Second-Harmonic Generation through Optimized Modal Phase Matching in Semiconductor Waveguides. Appl. Phys. Lett. 2003, 83, 620. [Google Scholar] [CrossRef]
- Luo, R.; He, Y.; Liang, H.; Li, M.; Ling, J.; Lin, Q. Optical Parametric Generation in a Lithium Niobate Microring with Modal Phase Matching. Phys. Rev. Appl. 2019, 11, 034026. [Google Scholar] [CrossRef]
- Troha, T.; Rigler, M.; Alden, D.; Bryan, I.; Guo, W.; Kirste, R.; Mita, S.; Gerhold, M.D.; Collazo, R.; Sitar, Z. UV Second Harmonic Generation in AlN Waveguides with Modal Phase Matching. Opt. Mater. Express 2016, 6, 2014–2023. [Google Scholar] [CrossRef]
- Dumeige, Y.; Feron, P. Whispering-Gallery-Mode Analysis of Phase-Matched Doubly Resonant Second-Harmonic Generation. Phys. Rev. A 2006, 74, 063804. [Google Scholar] [CrossRef]
- Kuo, P.S.; Fang, W.; Solomon, G.S. 4-Quasi-Phase-Matched Interactions in GaAs Microdisk Cavities. Opt. Lett. 2009, 34, 3580–3582. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, R.; Afridi, A.A.; Lu, Y.; Shi, X.; Sun, W.; Ou, H.; Li, Q. Efficient Raman Lasing and Raman–Kerr Interaction in an Integrated Silicon Carbide Platform. ACS Photonics 2024, 11, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, J.; Yi, A.; Fang, Z.; Zhou, L.; Wang, Z.; Niu, R.; Chen, Y.; Zhang, J.; Cheng, Y. Soliton Formation and Spectral Translation into Visible on CMOS-Compatible 4H-Silicon-Carbide-on-Insulator Platform. Light Sci. Appl. 2022, 11, 341. [Google Scholar] [CrossRef]
- Rahmouni, A.; Wang, R.; Li, J.; Tang, X.; Gerrits, T.; Slattery, O.; Li, Q.; Ma, L. Entangled Photon Pair Generation in an Integrated SiC Platform. Light Sci. Appl. 2024, 13, 110. [Google Scholar] [CrossRef]
- Zeng, D.; Liu, Q.; Mei, C.; Li, H.; Huang, Q.; Zhang, X. Demonstration of Ultra-High-Q Silicon Microring Resonators for Nonlinear Integrated Photonics. Micromachines 2022, 13, 1155. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, M.; Yu, M.; Zhu, R.; Hu, H.; Loncar, M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 2019, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gong, Z.; Bruch, A.W.; Surya, J.B.; Lu, J.; Tang, H.X. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun. 2021, 12, 5428. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Chang, L.; Shu, H.; Norman, J.C.; Peters, J.D.; Wang, X.; Bowers, J.E. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express 2020, 28, 32894–32906. [Google Scholar] [CrossRef]
- Matsuda, N.; Le Jeannic, H.; Fukuda, H.; Tsuchizawa, T.; Munro, W.J.; Shimizu, K.; Yamada, K.; Tokura, Y.; Takesue, H. A Monolithically Integrated Polarization Entangled Photon Pair Source on a Silicon Chip. Sci. Rep. 2012, 2, 817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, K.; Poon, A.W. Polarization Entanglement Generation in Silicon Nitride Waveguide-Coupled Dual Microring Resonators. Opt. Express 2024, 32, 22804–22816. [Google Scholar] [CrossRef]
- Carral, G.M.; Liñares, J.; Mateo, E.F.; Prieto-Blanco, X. Bell-State-Exchange-Parity-Based Protocol for Efficient Autocompensation of Quantum Key Distribution Encoded in Polarization or Spatial Modes. Appl. Sci. 2023, 13, 12907. [Google Scholar] [CrossRef]
- Chauhan, N.; Wang, J.; Bose, D.; Liu, K.; Compton, R.L.; Fertig, C.; Hoyt, C.W.; Blumenthal, D.J. Ultra-Low Loss Visible Light Waveguides for Integrated Atomic, Molecular, and Quantum Photonics. Opt. Express 2022, 30, 6960–6969. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.; Subramanian, A.; Helin, P.; Du Bois, B.; Baets, R.; Van Dorpe, P.; Gielen, G.; Puers, R.; Braeken, D. Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications. IEEE Photonics J. 2016, 8, 2701211. [Google Scholar] [CrossRef]
- Ojambati, O.S.; Chikkaraddy, R.; Deacon, W.D.; Horton, M.; Kos, D.; Turek, V.A.; Keyser, U.F.; Baumberg, J.J. Quantum Electrodynamics at Room Temperature Coupling a Single Vibrating Molecule with a Plasmonic Nanocavity. Nat. Commun. 2019, 10, 1049. [Google Scholar] [CrossRef]
- Castelletto, S. Silicon Carbide Single-Photon Sources: Challenges and Prospects. Mater. Quantum Technol. 2021, 1, 023001. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Silicon Carbide Color Centers for Quantum Applications. J. Phys. Photonics 2020, 2, 022001. [Google Scholar] [CrossRef]
- Fuchs, F.; Stender, B.; Trupke, M.; Simin, D.; Pflaum, J.; Dyakonov, V.; Astakhov, G. V Engineering Near-Infrared Single-Photon Emitters with Optically Active Spins in Ultrapure Silicon Carbide. Nat. Commun. 2015, 6, 7578. [Google Scholar] [CrossRef] [PubMed]
- Castelletto, S.; Johnson, B.C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T. A Silicon Carbide Room-Temperature Single-Photon Source. Nat. Mater. 2014, 13, 151–156. [Google Scholar] [CrossRef]
- Wang, J.-F.; Liu, Z.-H.; Yan, F.-F.; Li, Q.; Yang, X.-G.; Guo, L.; Zhou, X.; Huang, W.; Xu, J.-S.; Li, C.-F. Experimental Optical Properties of Single Nitrogen Vacancy Centers in Silicon Carbide at Room Temperature. ACS Photonics 2020, 7, 1611–1616. [Google Scholar] [CrossRef]
- Crook, A.L.; Anderson, C.P.; Miao, K.C.; Bourassa, A.; Lee, H.; Bayliss, S.L.; Bracher, D.O.; Zhang, X.; Abe, H.; Ohshima, T. Purcell Enhancement of a Single Silicon Carbide Color Center with Coherent Spin Control. Nano Lett. 2020, 20, 3427–3434. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, J.; Fan, W.; Lu, Y.; Peng, N.; Rottwitt, K.; Ou, H. Compact Low-Birefringence Polarization Beam Splitter Using Vertical-Dual-Slot Waveguides in Silicon Carbide Integrated Platforms. Photonics Res. 2022, 10, A8–A13. [Google Scholar] [CrossRef]
- Shi, X.; Lu, Y.; Ou, H. High-Performance Silicon Carbide Polarization Beam Splitting Based on an Asymmetric Directional Couplers for Mode Conversion. Opt. Lett. 2023, 48, 616–619. [Google Scholar] [CrossRef]
- Shi, X.; Lu, Y.; Peng, N.; Rottwitt, K.; Ou, H. High-Performance Polarization-Independent Beam Splitters and MZI in Silicon Carbide Integrated Platforms for Single-Photon Manipulation. J. Light. Technol. 2022, 40, 7626–7633. [Google Scholar] [CrossRef]
- Li, J.; Poon, A.W. On-Chip Passive Pump-Rejection Long-Pass Filters for Integrated SiC-Based Nonlinear and Quantum Photonic Chips. Opt. Lett. 2024, 49, 411–414. [Google Scholar] [CrossRef]
- Šimko, F.; Lenčéš, Z.; Kim, Y.-W.; Nosko, M.; Kontrík, M.; Korenko, M. High Temperature Corrosion Resistance of Electrically Conductive Nitrogen Doped Silicon Carbide Ceramics in Molten Fluorides. J. Eur. Ceram. Soc. 2023, 43, 3931–3940. [Google Scholar] [CrossRef]
- Soltys, L.M.; Mironyuk, I.F.; Mykytyn, I.M.; Hnylytsia, I.D.; Turovska, L.V. Synthesis and Properties of Silicon Carbide. Phys. Chem. Solid State 2023, 24, 5–16. [Google Scholar] [CrossRef]
Material | Si | SiN | 6H-SiC | 4H-SiC | 3C-SiC | LN | AlN [33] | AlxGa1−xAs a [27] |
---|---|---|---|---|---|---|---|---|
Point-group symmetry | m3m | N/A | 6 mm | 6 mm | 43 m | 3 m | 6 mm | 43 m |
Transparency window (μm) | 1.1~9 [34] | 0.28~6.70 [35] | 0.41~4 [36] | 0.37~5.60 [37] | 0.53~10 [38] | 0.39~3.80 [39] | 0.2~5 | (0.57 for x = 1~0.90 for x = 0)~17 |
Refractive index | 3.50 @ 1550 nm [40] | 2.00 @ 1550 nm [41] | 2.56(o)/2.60(e) @ 1550 nm 2.61(o)/2.65(e) @ 775 nm [37] | 2.56 @ 1550 nm [42] 2.61 @ 775 nm [43] | 2.21(o)/2.14(e) @ 1550 nm 2.26(o)/2.18(e) @ 775 nm [44] | 2.12(o)/2.16(e) @ 1550 nm 2.14(o)/2.18(e) @ 775 nm [45] | 3.18 @ 1550 nm 3.39 @ 775 nm (x = 0.41) [46] | |
Second-order nonlinear susceptibility b (pm/V) | N/A | N/A | d33 = −12.5 d31 = 6.7 d15 = 6.5 @ 1064 nm [47] | d33 = −11.7 d31 = 6.5 d15 = 6.7 @ 1064 nm [47] | d36 = d14 = d25 = 17 [48] d = 16.2 c [49] | d31 = 4.5 d33 = 27 @ 1064 nm [50] | d33 = 2.35 [51] | d14 ∈ [39, 170] @ 1064 nm |
Electro-optic effect (pm/V) | Carrier plasma dispersion | N/A | r33 = 3.85 r31 = −2.30 r15 = −2.14 @ 1064 nm [52] / Carrier plasma dispersion | r33 = 0.02 r13 = 0.64 @ 1550 nm [53] / Carrier plasma dispersion | r = 1.5 @ 1550 nm [49] / Carrier plasma dispersion | r33 = 30.8 r13 = 8.6 r22 = 3.4 [54] | r33 = −0.59 r13 = 0.67 @ 633 nm | r14 = −(1.54 ± 0.08) @ 1.52 µm [55] |
Nonlinear refractive index, n2 (m2/W) | 6 × 10−18 @ 1550 nm [56] | 3.1 × 10−19 (LPCVD) @ 1550 nm [57] | 3.69 × 10−19 @ 780 nm [58] | n2,TM = (13.1 ± 7.0) × 10−19 n2,TE = (7± 3) × 10−19 @ 1550 nm [59] | (5.31 ± 0.04) × 10−19 @ 1550 nm [60] | ~10−19 @ 1064 nm [61] | 2.3 × 10−19 @ 1550 nm | ~1.5 × 10−17 @ 1550 nm [62] |
Phase matching method for χ(2) | N/A | N/A | Birefringent phase matching, MPM | Birefringent phase matching, MPM | 4-QPM, MPM | Birefringent phase matching, MPM, periodic poling-based quasi-PM | Birefringent phase matching, MPM | 4-QPM, MPM |
Thermo-optic coefficient (K−1) | 1.86 × 10−4 @ 1550 nm [63] | 2.45 × 10−5 @ 1550 nm [64] | 6 × 10−5 @ 1550 nm [65] | 4.94 × 10−5 @ 1550 nm [66] | 2.92 × 10−5 [67] | o-wave: 6.9 × 10−5 e-wave: 22.4 × 10−5 @ 632 nm [68] | 4.26 × 10−5 @ 1000 nm | 2.67 × 10−4 @ 1000 nm [69] |
Photorefractive effect | N/A | N/A | N/A | No [70] | No [71] | Yes [72] | Yes [73] | Yes [72] |
Wafer form | Commercial 8” SOI wafers [74] | Deposition on 8” oxidized Si wafers [75] | 6” wafers [76] | 8” wafers [77] | Grown on 4” Si wafers [78] | Commercial 8” LNOI wafers [79] | Deposition on oxidized Si wafers [33]/6” AlN-on-Sapphire [80] | Grown on 6” III-V wafers [81] |
Platform | 3C-SiC | 4H-SiC | Si | SiN | LN | AlN | AlxGa1−xAs | |||
---|---|---|---|---|---|---|---|---|---|---|
Microring geometry | Circular [49] | Elliptical [29] | Circular [114] | Racetrack [53] | Racetrack [127] | Circular [9] | Circular [128] | Circular [129] | Circular [130] | |
Device parameters | Ring width (μm) | 0.8 | 1 | 1.85 | 2.5 | 0.5 | 1.58 | 1.3 | 3.5 | 1 |
Thickness (nm) | 530 | 800 | 500~600 | 850 | 220 | 810 | 600 | 1000 | 400 | |
Radius (μm) | N/A | 30/15 (semi-major/minor) | 100 | 100 (bended waveguides) | 20 (bended waveguides) | N/A | 80 | 100 | 143 | |
Q factors ) | @ ~1580 nm | @ 1575.4 nm | @ 1553.3 nm | @ ~1550 nm | @ 1549.8 nm | @ 1621.8 nm | @ ~1550 nm | @ ~1533 nm | @ ~1565 nm | |
Propagation loss (dB/cm) | ~5.2 | ~11 | ~0.09 | ~0.09 | 0.21 | ~0.005 | ~0.08 | ~0.03 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wang, J.; Poon, A.W. Silicon Carbide Microring Resonators for Integrated Nonlinear and Quantum Photonics Based on Optical Nonlinearities. Photonics 2024, 11, 701. https://doi.org/10.3390/photonics11080701
Zhang Q, Wang J, Poon AW. Silicon Carbide Microring Resonators for Integrated Nonlinear and Quantum Photonics Based on Optical Nonlinearities. Photonics. 2024; 11(8):701. https://doi.org/10.3390/photonics11080701
Chicago/Turabian StyleZhang, Qianni, Jiantao Wang, and Andrew W. Poon. 2024. "Silicon Carbide Microring Resonators for Integrated Nonlinear and Quantum Photonics Based on Optical Nonlinearities" Photonics 11, no. 8: 701. https://doi.org/10.3390/photonics11080701
APA StyleZhang, Q., Wang, J., & Poon, A. W. (2024). Silicon Carbide Microring Resonators for Integrated Nonlinear and Quantum Photonics Based on Optical Nonlinearities. Photonics, 11(8), 701. https://doi.org/10.3390/photonics11080701