Goniopolarimetric Properties of Typical Satellite Material Surfaces: Intercomparison with Semi-Empirical pBRDF Modeled Results
Abstract
:1. Introduction
2. Theory
2.1. Definition of Polarization Light
2.2. Existing Semi-Empirical pBRDF Models
- (1)
- Preist–Germer model
- (2)
- Maxwell–Beard model
- (3)
- Three-component model
- (4)
- Cook–Torrance model
- (5)
- Kubelka–Munk model
3. Measurement System and Samples
4. Results of Measurements
4.1. The Polarized Spectral of Typical Satellite Material Surfaces
4.2. The Distribution of Polarization for Typical Satellite Material Surfaces
5. Intercomparison Between Measurements and Modeled Results
5.1. Model Parameters Determination
5.2. Intercomparison Between the Measured and Modeled Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- The Preist–Germer model parameters
Wavelengths | Silver Polyimide Film | White Coating | ||||||
---|---|---|---|---|---|---|---|---|
n | k | σ | RMSE | n | k | σ | RMSE | |
560 nm | 1.527 | 3.19 × 10−5 | 0.105 | 0.110 | 1.221 | 7.17 × 10−7 | 0.158 | 0.068 |
670 nm | 1.451 | 1.26 × 10−8 | 0.106 | 0.112 | 1.217 | 2.02 × 10−3 | 0.161 | 0.068 |
865 nm | 1.643 | 9.31 × 10−5 | 0.105 | 0.108 | 1.207 | 0.181 | 0.163 | 0.069 |
- 2.
- The Maxwell–Beard model parameters
Samples | Wavelengths | σ | τ | Ω | kdif | kvol | B | RMSE |
---|---|---|---|---|---|---|---|---|
Silver polyimide film | 560 | 0.108 | 0.118 | 0.133 | 0.018 | 1.49 × 10−5 | 1.000 | 0.043 |
670 | 0.109 | 0.007 | 0.109 | 0.015 | 2.65 × 10−14 | 0.949 | 0.048 | |
865 | 0.106 | 0.161 | 0.186 | 0.006 | 0.005 | 0.996 | 0.050 | |
White coating | 560 | 0.197 | 0.223 | 0.486 | 0.140 | 3.22 × 10−9 | 0.996 | 0.008 |
670 | 0.198 | 0.317 | 0.485 | 0.166 | 1.74 × 10−7 | 1.000 | 0.007 | |
865 | 0.196 | 0.479 | 0.462 | 0.194 | 4.98 × 10−6 | 1.000 | 0.008 |
- 3.
- Three-component model parameters
Wavelengths | ks | km | kv | σ | RMSE | |
---|---|---|---|---|---|---|
Silver polyimide film | 560 | 0.366 | 1.677 | −0.951 | 0.095 | 0.053 |
670 | 0.386 | 0.050 | −0.033 | 0.110 | 0.129 | |
865 | 0.374 | 0.981 | 2.622 | 0.088 | 0.055 | |
White coating | 560 | 0.225 | 4.76 × 10−5 | 4.26 × 10−5 | 0.173 | 0.011 |
670 | 0.212 | 0.877 | 3.127 | 0.174 | 0.010 | |
865 | 0.183 | 9.24 × 10−8 | 2.89 × 10−8 | 0.170 | 0.023 |
- 4.
- The Cook–Torrance model parameters
Wavelengths | Silver Polyimide Film | White Coating | ||||||
---|---|---|---|---|---|---|---|---|
kc | kd | σ | RMSE | kc | kd | σ | RMSE | |
560 nm | 0.179 | 0.121 | 0.118 | 0.045 | 0.582 | 0.159 | 0.269 | 0.011 |
670 nm | 0.180 | 0.113 | 0.119 | 0.051 | 0.593 | 0.139 | 0.270 | 0.010 |
865 nm | 0.231 | 0.128 | 0.121 | 0.056 | 0.570 | 0.115 | 0.231 | 0.011 |
- 5.
- The Kubelka–Munk model parameters
Wavelengths | Silver Polyimide Film | White Coating | ||||||
---|---|---|---|---|---|---|---|---|
ζ | σ | Rd | RMSE | ζ | σ | Rd | RMSE | |
560 nm | 0.762 | 0.103 | 0.202 | 0.035 | 0.210 | 0.179 | 0.087 | 0.016 |
670 nm | 0.754 | 0.102 | 0.211 | 0.041 | 0.212 | 0.178 | 0.109 | 0.016 |
865 nm | 0.531 | 0.082 | 0.206 | 0.050 | 0.208 | 0.177 | 0.232 | 0.017 |
References
- Stead, R.P. An Investigation of Polarization Produced by Space Objects; Air Force Institute of Technology: Dayton, OH, USA, 1967.
- Pesses, M.; Tan, J.; Hash, R.; Swartz, R. Simulation of LWIR polarimetric observations of space objects. In Proceedings of the Applied Imagery Pattern Recognition Workshop, 2002. Proceedings., Washington, DC, USA, 16–18 October 2002; pp. 164–170. [Google Scholar]
- Liu, H.; Zhu, J.; Wang, K.; Xu, R. Polarized BRDF for coatings based on three-component assumption. Opt. Commun. 2017, 384, 118–124. [Google Scholar] [CrossRef]
- Nicodemus, F. Directional reflectance and emissivity of an opaque surface. Appl. Opt. 1967, 4, 767. [Google Scholar] [CrossRef]
- Willison, A.; Bedard, D. A novel approach to modeling spacecraft spectral reflectance. Adv. Space Res. 2016, 58, 1318–1330. [Google Scholar] [CrossRef]
- Roujean, J.; Leroy, M.; Deschamps, P. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. 1992, 97, 20455. [Google Scholar] [CrossRef]
- Jiang, C.X.; Tan, Y.; Qu, G.N.; Lv, Z.; Gu, N.W.; Lu, W.J.; Zhou, J.W.; Li, Z.W.; Xu, R.; Wang, K.L.; et al. Super diffraction limitspectral imaging detection and material type identification of distant space objects. Opt. Express 2022, 30, 46911–46925. [Google Scholar] [CrossRef]
- Westin, S.; Li, H.; Torrance, K. A comparison of four BRDF models. In Proceedings of the Eurographics Symposium on Rendering, Norköping, Sweden, 21–23 June 2004; pp. 1–10. [Google Scholar]
- Yang, M.; Xu, W.; Li, J.; Zhou, Z. A modified version of BRDF model based Kubelka-Munk theory for coating materials. Optik 2019, 193, 162982. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, D.; Lv, Y. Photopolarimetric properties of a manmade target over a wide range of measurement directions. Opt. Express 2017, 25, A85–A100. [Google Scholar] [CrossRef]
- Priest, R.; Germer, T. Polarimetric BRDF in the microfacet model: Theory and measurements. In Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Sensors Group on Passive Sensors, Ann Arbor, MI, USA, 21–23 March 2000; Volume 1, pp. 169–181. [Google Scholar]
- Priest, R.; Meier, S. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces. Opt. Eng. 2002, 41, 988–993. [Google Scholar] [CrossRef]
- Torrance, K.; Sparrow, E. Theory of off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 1967, 57, 1105–1114. [Google Scholar] [CrossRef]
- Hyde, M.; Schmidt, J.; Havrilla, M. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces. Opt. Express 2009, 17, 22138–22153. [Google Scholar] [CrossRef]
- Diner, J.; Xu, F.; Martonchik, J.; Rheingans, B.; Geier, S.; Jovanovic, V.; Davis, A.; Chipman, R.; McClain, S. Exploration of a polarized surface bidirectional reflectance model using the ground-based multiangle spectropolarimetric imager. Atmosphere 2012, 3, 591–619. [Google Scholar] [CrossRef]
- Zhan, H.; Voelz, D. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: Surface parameter estimation. Opt. Eng. 2016, 55, 123103. [Google Scholar] [CrossRef]
- Kubelka, P. New contributions to the optics intensely light scattering materials, Part 1. J. Opt. Soc. Am. 1948, 38, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A. Modified Kubelka-Munk model for calculation of the reflectance of coatings with optically-rough surfaces. J. Phys. D Appl. Phys. 2006, 39, 3571–3581. [Google Scholar] [CrossRef]
- Sun, Z.; Peng, Z.; Wu, D.; Lv, F. Photopolarimetric properties of leaf and vegetation covers over a wide range of measurement directions. J. Quant. Spectrosc. Radiat. Transf. 2018, 206, 273–285. [Google Scholar] [CrossRef]
- Litvinov, P.; Hasekamp, O.; Cairns, B. Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurement. Remote Sens. Environ. 2010, 115, 781–792. [Google Scholar] [CrossRef]
- Su, D.; Liu, L.; Liu, L.; Ming, R.; Wu, S.; Zhang, J. An Infrared DoLP Model Considering the Radiation Coupling Effect. Photonics 2021, 8, 546. [Google Scholar] [CrossRef]
- Stokes, G. On the comparison and resolution of streams of polarized light from different sources. Trans. Camb. Philos. Soc. 1852, 9, 399–416. [Google Scholar]
- Talmage, D.; Curran, P. Remote sensing using partially polarized light. Int. J. Remote Sens. 1986, 7, 47–64. [Google Scholar] [CrossRef]
- Katarina, Z.; Charles, M.; Deric, J.; Marcos, J.; Robert, A. Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands. Appl. Opt. 2015, 54, F243–F255. [Google Scholar]
- Shell, J. Polarimetric Remote Sensing in the Visible to Near Infrared. Ph.D’s Thesis, Rochester Institute of Technology, Rochester, NY, USA, 2005. [Google Scholar]
- Cook, R.; Torrance, K. A reflectance model for computer graphics. ACM Trans. Graph. 1981, 1, 7–24. [Google Scholar] [CrossRef]
- Huang, B.; Peng, B.; Ren, Q.; Liao, S. Modeling and analysis of spectral polarization BRDF based on microfacet theory. J. Quant. Spectrosc. Radiat. Transf. 2024, 313, 108830. [Google Scholar] [CrossRef]
- Yang, M.; Xu, W.; Sun, Z.; Jia, A.; Xiu, P.; Li, L.; Zheng, C.; Li, J. Degree of polarization modeling based on modified microfacet pBRDF model for material surface. Opt. Commun. 2019, 453, 124390. [Google Scholar] [CrossRef]
- Blinn, J. Models of light reflection for computer synthesized pictures. ACM SIGGRAPH Comput. Graph. 1977, 11, 192–198. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, Z.; Zhao, Y. Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces. Rev. Sci. Instrum. 2014, 85, 014503. [Google Scholar] [CrossRef]
- Renhorn, I.; Boreman, G. Analytical fitting model for rough-surface BRDF. Opt. Express 2008, 16, 12892–12898. [Google Scholar] [CrossRef]
- Hyde, M.; Cain, S.; Schmidt, J.; Havrilla, M. Material classification of an unknown object using turbulence-degraded polarimetric imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 264–276. [Google Scholar] [CrossRef]
- Meng, L.; Kerekes, J. An analytical model for optical polarimetric imaging systems. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6615–6626. [Google Scholar] [CrossRef]
- Brown, C.E. Coefficient of variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–157. [Google Scholar]
- Sun, Z.; Wu, D.; Lv, Y.; Zhao, Y. Polarized reflectance factors of vegetation covers from laboratory and field: A comparison with modeled results. J. Geophys. Res. Atmos. 2017, 122, 1042–1065. [Google Scholar] [CrossRef]
Samples | Index | Preist–Germer Model | Maxwell–Beard Model | Three–Component Model | Cook–Torrance Model | Kubelka–Munk Model |
---|---|---|---|---|---|---|
Silver polyimide film | RMSE | 0.0622 | 0.0554 | 0.0473 | 0.0357 | 0.0325 |
Cor | 0.896 | 0.973 | 0.982 | 0.981 | 0.994 | |
White coating | RMSE | 0.0682 | 0.0239 | 0.0212 | 0.0227 | 0.0203 |
Cor | 0.876 | 0.978 | 0.982 | 0.980 | 0.984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Mao, H.; Wu, J.; Zheng, C.; Wang, L. Goniopolarimetric Properties of Typical Satellite Material Surfaces: Intercomparison with Semi-Empirical pBRDF Modeled Results. Photonics 2025, 12, 17. https://doi.org/10.3390/photonics12010017
Yang M, Mao H, Wu J, Zheng C, Wang L. Goniopolarimetric Properties of Typical Satellite Material Surfaces: Intercomparison with Semi-Empirical pBRDF Modeled Results. Photonics. 2025; 12(1):17. https://doi.org/10.3390/photonics12010017
Chicago/Turabian StyleYang, Min, Hongxia Mao, Jun Wu, Chong Zheng, and Li Wang. 2025. "Goniopolarimetric Properties of Typical Satellite Material Surfaces: Intercomparison with Semi-Empirical pBRDF Modeled Results" Photonics 12, no. 1: 17. https://doi.org/10.3390/photonics12010017
APA StyleYang, M., Mao, H., Wu, J., Zheng, C., & Wang, L. (2025). Goniopolarimetric Properties of Typical Satellite Material Surfaces: Intercomparison with Semi-Empirical pBRDF Modeled Results. Photonics, 12(1), 17. https://doi.org/10.3390/photonics12010017