Comparative Study of γ Radiation-Induced Effects on Fiber Bragg Gratings by Femtosecond Laser Point-by-Point Method and Line-by-Line Method
Abstract
:1. Introduction
2. Principle
2.1. FBG Sensing Principle
2.2. FBG Radiation Damage Mechanism and Protection
2.3. The Principle of Femtosecond Writing FBG
3. Experimental Results and Discussion
3.1. Femtosecond Writing FBG Device
3.2. Sensing Experimental System
3.3. Radiation Experiment
3.4. Experimental Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, S.-Z.; Xiong, W.-C.; Huang, L.-P.; Wang, Z.-R.; Zhang, X.-B.; He, Z.-H. Damage and recovery of fiber Bragg grating under radiation environment. Chin. Phys. B 2018, 27, 090701. [Google Scholar] [CrossRef]
- Rana, S.; Subbaraman, H.; Fleming, A.; Kandadai, N. Numerical Analysis of Radiation Effects on Fiber Optic Sensors. Sensors 2021, 21, 4111. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Prakash, O.; Kumar, S.; Dixit, S.K.; Bhardwaj, Y.K.; Nakhe, S.V. Effect of gamma radiation dose on the performance of negative-index fiber Bragg gratings. Opt. Eng. 2019, 58, 057108. [Google Scholar] [CrossRef]
- Gussarov, A.; Chojetzki, C.; Mckenzie, I.; Berghmans, F. Influence of the coating type on the radiation sensitivity of FBGs. In Optical Sensors 2008; Bergmans, F., Mignani, A.G., Cutolo, A., Meyrueis, P.P., Pearsall, T.P., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 7003, p. 700309. [Google Scholar] [CrossRef]
- Kashaykin, P.F.; Vasiliev, S.A.; Tomashuk, A.L.; Ignatyev, A.D.; Britskii, V.A.; Shaimerdenov, A.A.; Akhanov, A.M.; Silnyagin, P.P.; Kulsartov, T.V. Radiation Resistance of Fiber Bragg Gratings under Intense Reactor Irradiation. Bull. Lebedev Phys. Inst. 2023, 50 (Suppl. S3), S322–S328. [Google Scholar] [CrossRef]
- Morana, A.; Girard, S.; Marin, E.; Marcandella, C.; Périsse, J.; Macé, J.R.; Boukenter, A.; Cannas, M.; Ouerdane, Y. Radiation hardening of FBG in harsh environments. In Proceedings of the SPIE 9157, 23rd International Conference on Optical Fibre Sensors 9157, Santander, Spain, 2–6 June 2024; Mirapeix, S., Jesus, M., Eds.; SPIE-International Society of Optical Engineering: Bellingham, WA, USA, 2014; p. 91578. [Google Scholar] [CrossRef]
- Zaghloul, M.A.; Wang, M.; Huang, S.; Hnatovsky, C.; Grobnic, D.; Mihailov, S.; Li, M.-J.; Carpenter, D.; Hu, L.-W.; Daw, J.; et al. Radiation resistant fiber Bragg grating in random air-line fibers for sensing applications in nuclear reactor cores. Opt. Express 2018, 26, 11775. [Google Scholar] [CrossRef]
- Xu, B.; He, J.; Du, B.; Xiao, X.; Xu, X.; Fu, C.; He, J.; Liao, C.; Wang, Y. Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing. Opt. Express 2021, 29, 32615. [Google Scholar] [CrossRef] [PubMed]
- Theodosiou, A.; Leal-Junior, A.; Marques, C.; Frizera, A.; Fernandes, A.J.S.; Stancalie, A.; Ioannou, A.; Ighigeanu, D.; Mihalcea, R.; Negut, C.D.; et al. Comparative Study of γ- and e-Radiation-Induced Effects on FBGs Using Different Femtosecond Laser Inscription Methods. Sensors 2021, 21, 8379. [Google Scholar] [CrossRef]
- Henschel, H.; Hoeffgen, S.K.; Krebber, K.; Kuhnhenn, J.; Weinand, U. Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings. In Proceedings of the 2007 9th European Conference on Radiation and Its Effects on Components and Systems, Deauville, France, 10–14 September 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Birri, A.; Wilson, B.A.; Blue, T.E. Deduced Refractive Index Profile Changes of Type I and Type II Gratings When Subjected to Ionizing Radiation. IEEE Sens. J. 2019, 19, 5000–5006. [Google Scholar] [CrossRef]
- Girard, S.; Ouerdane, Y.; Tortech, B.; Marcandella, C.; Robin, T.; Cadier, B.; Baggio, J.; Paillet, P.; Ferlet-Cavrois, V.; Boukenter, A.; et al. Radiation Effects on Ytterbium- and Ytterbium/Erbium-Doped Double-Clad Optical Fibers. IEEE Trans. Nucl. Sci. 2009, 56, 3293–3299. [Google Scholar] [CrossRef]
- Girard, S.; Marcandella, C.; Morana, A.; Perisse, J.; Di Francesca, D.; Paillet, P.; Mace, J.-R.; Boukenter, A.; Leon, M.; Gaillardin, M.; et al. Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers. IEEE Trans. Nucl. Sci. 2013, 60, 4305–4313. [Google Scholar] [CrossRef]
- Tajitsu, Y.; Ogura, H.; Chiba, A.; Furukawa, T. Investigation of Switching Characteristics of Vinylidene Fluoride/Trifluoroethylene Copolymers in Relation to Their Structures. Jpn. J. Appl. Phys. 1987, 26, 554. [Google Scholar] [CrossRef]
- Imai, H.; Arai, K.; Imagawa, H.; Hosono, H.; Abe, Y. Two types of oxygen-deficient centers in synthetic silica glass. Phys. Rev. B 1988, 38, 12772–12775. [Google Scholar] [CrossRef] [PubMed]
- Galeener, F.L.; Kerwin, D.B.; Miller, A.J.; Mikkelsen, J.J.C. X-ray creation and activation of electron spin resonance in vitreous silica. Phys. Rev. B 1993, 47, 7760–7779. [Google Scholar] [CrossRef] [PubMed]
- Griscom, D.L. Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation. J. Appl. Phys. 1995, 77, 5008–5013. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, Z.; Luo, W. Influences of Thermal Annealing Temperatures on Irradiation Induced E′ Centers in Silica Glass. IEEE Trans. Nucl. Sci. 2008, 55, 2685–2688. [Google Scholar] [CrossRef]
- Yeniay, A.; Gao, R. Radiation induced loss properties and hardness enhancement technique for ErYb doped fibers for avionic applications. Opt. Fiber Technol. 2013, 19, 88–92. [Google Scholar] [CrossRef]
- Hosono, H.; Ikuta, Y.; Kinoshita, T.; Kajihara, K.; Hirano, M. Physical Disorder and Optical Properties in the Vacuum Ultraviolet Region of Amorphous SiO2. Phys. Rev. Lett. 2001, 87, 175501. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wen, J.; Luo, W.; Xiao, Z.; Chen, Z.; Wang, T. Influence of photo- and thermal bleaching on pre-irradiation low water peak single mode fibers. In SPIE Proceedings, Passive Components and Fiber-Based Devices VIII; SPIE: Bellingham, WA, USA, 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Mihailov, S.J. Ultrafast laser inscribed fiber Bragg gratings for sensing applications. In SPIE Proceedings, Fiber Optic Sensors and Applications XIII; SPIE: Bellingham, WA, USA, 2016; Volume 9852, pp. 173–192. [Google Scholar] [CrossRef]
- Sun, H.-B.; Juodkazis, S.; Watanabe, M.; Matsuo, S.; Misawa, H.; Nishii, J. Generation and Recombination of Defects in Vitreous Silica Induced by Irradiation with a Near-Infrared Femtosecond Laser. J. Phys. Chem. B 2000, 104, 3450–3455. [Google Scholar] [CrossRef]
- Sudrie, L.; Franco, M.; Prade, B.; Mysyrowicz, A. Study of damage in fused silica induced by ultra-short IR laser pulses. Opt. Commun. 2001, 191, 333–339. [Google Scholar] [CrossRef]
- Teng, Y.; Zhou, J.; Sharafudeen, K.; Zhou, S.; Miura, K.; Qiu, J. Space-selective crystallization of glass induced by femtosecond laser irradiation. J. Non Cryst. Solids 2014, 383, 91–96. [Google Scholar] [CrossRef]
Type | Status | R2 of Heating | Maximal Error of Heating | R2 of Cooling | Maximal Error of Cooling | R2 of Applied Strain | Maximal Error of Applied Strain | R2 of Unloading Strain | Maximal Error of Unloading Strain | Temperature Measurement Resolution (pm/°C) | Strain Measurement Resolution (pm/με) |
---|---|---|---|---|---|---|---|---|---|---|---|
PbP | bofore radiation | 0.99533 | 0.27052 | 0.99304 | 0.24199 | 0.99936 | 0.03483 | 0.99906 | 0.03044 | 11.62 | 1.15 |
after radiation | 0.99152 | 0.31484 | 0.98952 | 0.3388 | 0.99593 | 0.08511 | 0.99617 | 0.11178 | 11.73 | 1.15 | |
LbL | before radiation | 0.99436 | 0.26805 | 0.99427 | 0.40633 | 0.99979 | 0.02489 | 0.99933 | 0.03689 | 12.31 | 1.13 |
after radiation | 0.98516 | 0.3253 | 0.92358 | 0.6645 | 0.99568 | 0.07867 | 0.99561 | 0.08289 | 11.95 | 1.15 |
Type | ΔR2 of Temperature | ΔMaximal Error of Temperature | ΔR2 of Strain | ΔMaximal Error of Strain | Temperature Measurement Resolution After Radiation (pm/°C) | ΔTemperature Measurement Resolution Ratio | Strain Measurement Resolution After Radiation (pm/με) | ΔStrain Measurement Resolution Ratio |
---|---|---|---|---|---|---|---|---|
PbP | −0.00381 | +0.04432 | −0.00343 | +0.05028 | 11.73 | 0.9% | 1.15 | 0 |
LbL | −0.0092 | +0.05725 | −0.00411 | +0.05378 | 11.95 | 2.92% | 1.15 | 1.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, M.; Zhang, Y.; Xiong, X.; Zhu, L. Comparative Study of γ Radiation-Induced Effects on Fiber Bragg Gratings by Femtosecond Laser Point-by-Point Method and Line-by-Line Method. Photonics 2025, 12, 32. https://doi.org/10.3390/photonics12010032
Hou M, Zhang Y, Xiong X, Zhu L. Comparative Study of γ Radiation-Induced Effects on Fiber Bragg Gratings by Femtosecond Laser Point-by-Point Method and Line-by-Line Method. Photonics. 2025; 12(1):32. https://doi.org/10.3390/photonics12010032
Chicago/Turabian StyleHou, Mingyang, Yumin Zhang, Xin Xiong, and Lianqing Zhu. 2025. "Comparative Study of γ Radiation-Induced Effects on Fiber Bragg Gratings by Femtosecond Laser Point-by-Point Method and Line-by-Line Method" Photonics 12, no. 1: 32. https://doi.org/10.3390/photonics12010032
APA StyleHou, M., Zhang, Y., Xiong, X., & Zhu, L. (2025). Comparative Study of γ Radiation-Induced Effects on Fiber Bragg Gratings by Femtosecond Laser Point-by-Point Method and Line-by-Line Method. Photonics, 12(1), 32. https://doi.org/10.3390/photonics12010032