Sagnac Interference-Based Contact-Type Fiber-Optic Vibration Sensor
Abstract
:1. Introduction
2. Principle
2.1. Sensor Sensing Principle
2.2. Sensor Fabrication and the Sensing System
3. Experimental and Results
3.1. Parameter Selection of the Sensor
3.2. Parameter of Rolling Bearing
3.3. Experiments and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nan, Y.; Xie, W.; Min, L.; Cai, S.; Ni, J.; Yi, J.; Luo, X.; Wang, K.; Nie, M.; Wang, C.; et al. Real-Time Monitoring of Wind-Induced Vibration of High-Voltage Transmission Tower Using an Optical Fiber Sensing System. IEEE Trans. Instrum. Meas. 2020, 69, 268–274. [Google Scholar] [CrossRef]
- Yi, D.; Liu, F.; Zhang, M.; He, X.; Zhou, X.; Long, K.; Li, X. Demonstration of Fiber-Optic Seismic Sensor with Improved Dynamic Response in Oilfield Application. IEEE Trans. Instrum. Meas. 2022, 71, 1–8. [Google Scholar] [CrossRef]
- Fouda, B.M.T.; Yang, B.; Han, D.; An, B. Pattern Recognition of Optical Fiber Vibration Signal of the Submarine Cable for Its Safety. IEEE Sens. J. 2021, 21, 6510–6519. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, X.; Yu, F.; Zhang, S.; Fang, H.; Cheng, X.; Zhao, X. High-temperature Vibration Sensor Based on Ba2TiSi2O8 Piezoelectric Crystal with Ultra-Stable Sensing Performance up to 650 °C. IEEE Trans. Ind. Electron. 2021, 68, 12850–12859. [Google Scholar] [CrossRef]
- Chao, M.J.; Jiang, R.; Wen, H.; He, J. Comparative Experiments of Optical Fiber Sensor and Piezoelectric Sensor based on Vibration Detection. In Proceedings of the 2020 IEEE 4th International Conference on Frontiers of Sensors Technologies (ICFST), Shanghai, China, 6–9 November 2020; pp. 17–20. [Google Scholar]
- Jie, R.; Ma, L.; Liu, X.; Zheng, H.; Jiang, L.; Xu, C.; Zhu, C.; Rao, Y.; Liu, B. Wide-Frequency-Range Vibration Sensing System Based on Simple Chirped Pulse Interferometry. IEEE Sens. J. 2023, 23, 18257–18266. [Google Scholar] [CrossRef]
- Pang, Y.N.; Liu, B.; Liu, J.; Wan, S.P.; Wu, T.; He, X.; Wu, Q. Wearable Optical Fiber Sensor Based on a Bend Singlemode-Multimode-Singlemode Fiber Structure for Respiration Monitoring. IEEE Sens. J. 2021, 21, 4610–4617. [Google Scholar] [CrossRef]
- Feng, R.; Chu, Y.; Liu, Z.; Wang, X.; Tang, F. Study on High Temperature Resistant Packaging of Ultra High Temperature Fabry–Perot Optical Fibre Vibration Sensor. IEEE Sens. J. 2021, 21, 27045–27050. [Google Scholar] [CrossRef]
- Sun, Y.-R.; Wang, Y.-N.; Li, J.; Meng, F. Load and Vibration Optical Fiber Sensor Based on Miniature Fabry–Perot Cavity Encapsulated by Micrometer Thickness of Silica Film. IEEE Sens. J. 2023, 23, 12930–12935. [Google Scholar] [CrossRef]
- Ma, B.; Jin, R.; Li, C.; Wu, Y.; Wang, C.; Jia, B. Improved Vibration Localization Algorithm for Multiple Intrusions Based on Phase Spectrum Estimation in Distributed Mach–Zender/Sagnac Optical Fiber Sensing System. IEEE Sens. J. 2024, 24, 12426–12432. [Google Scholar] [CrossRef]
- Li, T.; Guo, J.; Tan, Y.; Zhou, Z. Recent Advances and Tendency in Fiber Bragg Grating-Based Vibration Sensor: A Review. IEEE Sens. J. 2020, 20, 12074–12087. [Google Scholar] [CrossRef]
- Kong, C.; Zhao, D.; Zhang, J.; Liang, B. Real-Time Virtual Sensing for Dynamic Vibration of Flexible Structure via Fiber Bragg Grating Sensors. IEEE Sens. J. 2022, 22, 21706–21718. [Google Scholar] [CrossRef]
- Song, H.; Wang, Q.; Liu, M.; Cai, Q. A Novel Fiber Bragg Grating Vibration Sensor Based on Orthogonal Flexure Hinge Structure. IEEE Sens. J. 2020, 20, 5277–5285. [Google Scholar] [CrossRef]
- Cao, J.; Lou, S.; Huang, B.; Gu, S.; Jia, H.; Sheng, X.; Wang, X. High sensitivity vector torsion sensor based on a single Stress-Applying fiber Sagnac interferometer. Opt. Fiber Technol. 2023, 80, 103431. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Liu, X.; Bai, Q.; Wang, P.; Gao, Y.; Zhang, H.; Jin, B. Sagnac Vibration Sensing System with Nested Pulse Method. J. Light. Technol. 2021, 29, 1550–1556. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, K.; Sun, Y.; Huang, F.; Ye, Q.; Cai, H. High-Performance Compact Fiber Optic Interferometric Accelerometer Based on a Novel Push–Pull Structure. IEEE Trans. Instrum. Meas. 2024, 73, 1–8. [Google Scholar] [CrossRef]
- Dong, T.; Gao, B.; Liu, X.; Wang, Y.; Jiang, C.; Wang, X.; Yan, W.; Zhang, Y. Highly Sensitive Strain and Vibration Sensors Based on the Microfiber Sagnac Interferometer. IEEE Sens. J. 2023, 23, 24568–24574. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Li, J.; Meng, F. Design and Performance of Fiber Vibration Sensor Based on Fabry–Perot Structures with Microbubble. IEEE Sens. J. 2023, 23, 16930–16937. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Peng, Y.; Yu, K.; Liu, Y. Optical Fiber Vibration Sensor with Wide Detection Range Based on STDS Structure Designed by Mach–Zehnder Interferometer. IEEE Sens. J. 2023, 23, 27351–27360. [Google Scholar] [CrossRef]
- Gao, X.; Ning, T.; Zhang, C.; Xu, J.; Zheng, J.; Lin, H.; Li, J.; Pei, L.; You, H. A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt. Commun. 2020, 454, 124441. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Xu, D.; Zhang, H.; Su, G.; Duan, L.; Yan, C.; Yan, D.; Fu, S.; Yao, J. Temperature Sensor Based on Fiber Ring Laser with Sagnac Loop. IEEE Photonics Technol. Lett. 2016, 28, 794–797. [Google Scholar] [CrossRef]
- Lin, W.; Shao, L.; Liu, Y.; Bandyopadhyay, S.; Liu, Y.; Xu, W.; Vai, M.I. Temperature Sensor Based on Fiber Ring Laser with Cascaded Fiber Optic Sagnac Interferometers. IEEE Photonics J. 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Liu, K.; Ding, X.; Li, Y.; Liu, X.; Xiao, Q. Dual-Parameter Sensing of Parallel Fiber Sagnac Interferometer Based on Vernier Effect. IEEE Sens. J. 2023, 23, 6769–6778. [Google Scholar] [CrossRef]
- Xiao, C.; Yu, J. Adaptive Swarm Decomposition Algorithm for Compound Fault Diagnosis of Rolling Bearings. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, F.; Li, S. A Cross Working Condition Multiscale Recursive Feature Fusion Method for Fault Diagnosis of Rolling Bearing in Multiple Working Conditions. IEEE Access 2022, 10, 78502–78518. [Google Scholar] [CrossRef]
- Wu, G.; Yan, T.; Yang, G.; Chai, H.; Cao, C. A Review on Rolling Bearing Fault Signal Detection Methods Based on Different Sensors. Sensors 2022, 22, 8330. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Kang, R.; Liu, J. Rolling Bearing Fault Diagnosis Based on the Coherent Demodulation Model. IEEE Access 2020, 8, 207659–207671. [Google Scholar] [CrossRef]
- Peng, B.; Ying, B.; Xue, B.; Zhang, M.; Wan, S. A Survey on Fault Diagnosis of Rolling Bearings. Algorithms 2022, 15, 347. [Google Scholar] [CrossRef]
- Xu, Y.; Zhen, D.; Gu, J.X.; Rabeyee, K.; Chu, F.; Gu, F.; Ball, A.D. Autocorrelated Envelopes for early fault detection of rolling bearings. Mech. Syst. Signal Process. 2021, 146, 106990. [Google Scholar] [CrossRef]
- Orkisz, M.; Szewczuk, A. Spectrum Shape Based Roller Bearing Fault Detection and Identification. IEEE Trans. Ind. Appl. 2023, 59, 1547–1556. [Google Scholar] [CrossRef]
- Yang, X.; Guo, Y.; Fan, J. Application of Demodulation Frequency Band Optimization in Compound Fault Detection of Rolling Element Bearing Based on Fast Spectrum Correlation. IEEE Sens. J. 2023, 23, 17148–17158. [Google Scholar] [CrossRef]
- Cai, L.; Pan, J.; Yue, P.; Zhong, N. Theoretical analysis and application of MTM fiber structure based low-frequency vibration sensor. Optik 2019, 195, 163161. [Google Scholar] [CrossRef]
- Mohammed, A.; Djurović, S. Electric machine bearing health monitoring and ball fault detection by simultaneous thermo-mechanical fibre optic sensing. IEEE Trans. Energy Convers. 2020, 36, 71–80. [Google Scholar] [CrossRef]
- Vaddadi, V.S.C.S.; Parne, S.R.; Parambil, V.V.; Panda, S.S.S.; Gandi, S. Design of Fiber Bragg Grating Sensor for Eccentricity Measurements in Ball Bearings. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- de Pelegrin, J.; Dreyer, U.J.; Sousa, K.M.; da Silva, J.C.C. Smart Carbon-Fiber Reinforced Polymer Optical Fiber Bragg Grating for Monitoring Fault Detection in Bearing. IEEE Sens. J. 2022, 22, 12921–12929. [Google Scholar] [CrossRef]
Reference | Methods | Strain Sensitivities | Detection Range | Practical Application |
---|---|---|---|---|
[17] | SI | −9.11 pm/µε | 0–4500 με | No |
[18] | FPI | 1.164 nm/N | - | No |
[19] | MZI | - | 1–23,000 Hz | No |
[20] | FMF and FBG | −2 pm/με and 0.67 pm/με | 0–450 με | No |
Diameter of Inner Ring (mm) | Rolling Element Diameter (mm) | Diameter of Outer Ring (mm) | Number of Balls | Contact Angle | Pitch Diameter (mm) |
---|---|---|---|---|---|
10.0 | 4.8 | 30.0 | 8 | 0° | 20.0 |
Speed (r/min) | Theoretical (Hz) | Experiment (Hz) | Relative Error/% |
---|---|---|---|
1200 | 20.00 | 19.92 | 0.40 |
1500 | 25.00 | 25.05 | 0.20 |
2100 | 35.00 | 35.16 | 0.45 |
2400 | 40.00 | 39.84 | 0.40 |
Speed (r/min) | Theoretical (Hz) | Experiment (Hz) | Relative Error/% |
---|---|---|---|
1300 | 66.03 | 64.84 | 1.80 |
2000 | 101.58 | 100.00 | 1.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Tang, L.; Zhang, L.; Huang, W.; Cao, R.; Huang, C.; Hu, X.; Sun, Y.; Shi, J. Sagnac Interference-Based Contact-Type Fiber-Optic Vibration Sensor. Photonics 2025, 12, 131. https://doi.org/10.3390/photonics12020131
Li H, Tang L, Zhang L, Huang W, Cao R, Huang C, Hu X, Sun Y, Shi J. Sagnac Interference-Based Contact-Type Fiber-Optic Vibration Sensor. Photonics. 2025; 12(2):131. https://doi.org/10.3390/photonics12020131
Chicago/Turabian StyleLi, Hongmei, Longhuang Tang, Lijie Zhang, Wenjuan Huang, Rong Cao, Cheng Huang, Xiaobo Hu, Yifei Sun, and Jia Shi. 2025. "Sagnac Interference-Based Contact-Type Fiber-Optic Vibration Sensor" Photonics 12, no. 2: 131. https://doi.org/10.3390/photonics12020131
APA StyleLi, H., Tang, L., Zhang, L., Huang, W., Cao, R., Huang, C., Hu, X., Sun, Y., & Shi, J. (2025). Sagnac Interference-Based Contact-Type Fiber-Optic Vibration Sensor. Photonics, 12(2), 131. https://doi.org/10.3390/photonics12020131