Focusing Hemispherical Waves
Abstract
:1. Introduction
2. Scalar Theory
3. Vectorial Theory for Linearly or Circularly Polarized Illumination
4. Other Polarization Distributions
4.1. Electric and Magnetic Dipole Polarizations
4.2. Transverse Electric and Transverse Magnetic Polarizations
4.3. Perfect Weightings
4.4. Longitudinal Electric or Magnetic Dipole Polarizations
4.5. Cylindrically Symmetric Solutions
5. 4Pi Focusing
6. Vortex Beams
The General Behavior with Vortices
7. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Apl | Aplanatic |
c- | Circular |
ED | Electric dipole |
Hr | Herschel |
Hz | Helmholtz |
l- | Linear |
MgD | Magnetic dipole |
MxD | Mixed dipole |
P | Perfect |
Par | Paraxial |
rot.- | Rotating |
Sc | Scalar |
TE | Transverse electric |
TM | Transverse magnetic |
References
- Carter, W.H. Band-limited angular spectrum approximating to a spherical wave field. J. Opt. Soc. Am. 1975, 65, 1054–1058. [Google Scholar] [CrossRef]
- Bertilone, D.C. Wave theory for a converging spherical incident wave in an infinite-aperture system. J. Mod. Opt. 1991, 38, 1531–1536. [Google Scholar] [CrossRef]
- Bertilone, D.C. The contributions of homogeneous and evanescent plane waves to the scalar optical field: Exact diffraction formulae. J. Mod. Opt. 1991, 38, 865–875. [Google Scholar] [CrossRef]
- Arnoldus, H.F.; Foley, J.T. Traveling and evanescent parts of the electromagnetic Green’s tensor. J. Opt. Soc. Am. A 2002, 19, 1701–1711. [Google Scholar] [CrossRef]
- Arnoldus, H.F.; Foley, J.T. Travelling and evanescent parts of the optical near field. J. Mod. Opt. 2003, 50, 1883–1901. [Google Scholar] [CrossRef]
- Arnoldus, H.F. Evanescent waves in the near- and the far field. Adv. Imaging Electron Phys. 2004, 132, 1–67. [Google Scholar]
- Ignatowsky, V.S. Diffraction by a lens of arbitrary aperture. Trans. Opt. Inst. Petrograd 1919, 1, 1–36. [Google Scholar]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems. II Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 1959, 253, 358–379. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 1st ed.; Pergamon: Oxford, UK, 1959. [Google Scholar]
- Sheppard, C.J.R.; Larkin, K.G. Optimal concentration of electromagnetic radiation. J. Mod. Opt. 1994, 41, 1495–1505. [Google Scholar] [CrossRef]
- Jacquinot, P.; Roizen-Dossier, M.B. Apodisation. In Progress in Optics; Wolf, E., Ed.; North-Holland: Amsterdam, The Netherlands, 1964; Volume 3, pp. 67–108. [Google Scholar]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions, 3rd ed.; Dover: New York, NY, USA, 1972. [Google Scholar]
- Luneburg, R.K. Mathematical Theory of Optics; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1964. [Google Scholar]
- Hopkins, H.H. The Airy disc formula for systems of high relative aperture. Proc. Phys. Soc. 1943, 55, 116–128. [Google Scholar] [CrossRef]
- Carter, W.H. Bandlimited angular spectrum approximation to a scalar dipole field. Opt. Commun. 1970, 2, 142–148. [Google Scholar] [CrossRef]
- Darwin, C.G. The theory of X-ray reflexion. Philos. Mag. 1914, 27, 211–213, 313–333, 675–690. [Google Scholar]
- Boivin, A.; Dow, J.; Wolf, E. Energy flow in the neighbourhood of the focus of a coherent beam. J. Opt. Soc. Am. 1967, 57, 1171–1175. [Google Scholar] [CrossRef]
- Setälä, T.; Kaivola, M.; Friberg, A.T. Decomposition of the point-dipole field into homogeneous and evanescent parts. Phys. Rev. E 1999, 59, 1200–1206. [Google Scholar] [CrossRef]
- Stamnes, J.J.; Dhayalan, V. Focusing of electric dipole waves. Pure Appl. Opt. 1996, 5, 195–226. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Török, P. Electromagnetic field in the focal region of an electric dipole wave. Optik 1997, 104, 175–177. [Google Scholar]
- Sheppard, C.J.R.; Saghafi, S. Electric and magnetic dipole beam modes beyond the paraxial approximation. Optik 1999, 110, 487–491. [Google Scholar]
- Sheppard, C.J.R.; Balla, N.K.; Rehman, S. Performance parameters for highly-focused electromagnetic waves. Opt. Commun. 2009, 282, 727–734. [Google Scholar] [CrossRef]
- Hao, X.; Kuang, C.F.; Wang, T.T.; Liu, X. Phase encoding for sharper focus of azimuthally polarized beam. Opt. Lett. 2010, 35, 3928–3930. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Rehman, S. Highly convergent focusing of light based on rotating dipole polarization. Appl. Opt. 2011, 50, 4463–4467. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Balla, N.K.; Rehman, S.; Yew, E.Y.S.; Teng, W. Bessel beams with the tightest focus. Opt. Commun. 2009, 282, 4647–4656. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Electromagnetic field in the focal region of wide-angular annular lens and mirror systems. IEE J. Microwaves Opt. Acoust. 1978, 2, 163–166. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Saghafi, S. Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation. Opt. Lett. 1999, 24, 1543–1545. [Google Scholar] [CrossRef] [PubMed]
- Quabis, S.; Dorn, R.; Eberler, M.; Glockl, O.; Leuchs, G. Focusing light to a tighter spot. Opt. Commun. 2000, 179, 1–7. [Google Scholar] [CrossRef]
- Youngworth, K.S.; Brown, T.G. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 2000, 7, 77–87. [Google Scholar] [CrossRef]
- Dorn, R.; Quabis, S.; Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 2003, 91, 233901. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Yew, E.Y.S. Performance parameters for focusing of radial polarization. Opt. Lett. 2008, 33, 497–499. [Google Scholar] [CrossRef]
- Urbach, H.P.; Pereira, S.F. Field in focus with a maximum longitudinal electric component. Phys. Rev. Lett. 2008, 100, 123904. [Google Scholar] [CrossRef]
- Hell, S.; Stelzer, E.H.K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun. 1992, 93, 277–282. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Gong, W.; Si, K. Polarization effects in 4Pi microscopy. Micron 2011, 42, 353–359. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Focusing of vortex beams: Lommel treatment. J. Opt. Soc. Am. A 2014, 31, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Condell, W.J. Fraunhofer diffraction from a circular annular aperture with helical phase factor. J. Opt. Soc. Am. A 1985, 2, 206–208. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kotlyar, V.V.; Shinkaryev, M.V.; Soifer, V.A.; Uspleniev, G.V. The phase rotor filter. J. Mod. Opt. 1992, 39, 1147–1154. [Google Scholar] [CrossRef]
- Helseth, L.E. Optical vortices in focal regions. Opt. Commun. 2004, 229, 85–91. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Polarized focused vortex beams: Half-order phase vortices. Opt. Express 2014, 22, 18128–18141. [Google Scholar] [CrossRef]
- Klar, T.A.; Engel, E.; Hell, S.W. Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E 2001, 64, 066613. [Google Scholar] [CrossRef]
- Török, P.; Munro, P.R.T. The use of Gauss-Laguerre vector beams in STED microscopy. Opt. Express 2004, 12, 3605–3617. [Google Scholar] [CrossRef]
- Ganic, D.; Gan, X.; Gu, M. Focusing of doughnut beams by a high numerical-aperture objective in free space. Opt. Express 2003, 11, 2747–2752. [Google Scholar] [CrossRef]
Case | Abbreviation | FWHM (v Value) |
---|---|---|
Paraxial | Par | 3.23 |
Scalar Herschel | ScHr | 2.78 |
Scalar aplanatic | ScApl | 3.02 |
Scalar perfect Herschel | ScPHr | 3.23 |
Scalar perfect Helmholtz | ScPHz | 2.53 |
Circular polarized aplanatic | c-Apl | 3.67 |
Circular polarized Herschel | c-Hr | 3.61 |
Circular polarized mixed dipole | c-MxD | 3.64 |
Circular polarized perfect Herschel | c-PHr | 3.79 |
Circular polarized perfect mixed dipole | c-PMxD | 3.90 |
Rotating electric dipole | rot.-ED | 3.10 |
Rotating magnetic dipole | rot.-MgD | 5.02 |
Transverse electric (azimuthal vortex) | rot.-TE | 2.87 |
Transverse magnetic (radial vortex) | rot.-TM | 7.22 |
Radial electric dipole | TM | 2.68 |
Perfect rotating electric dipole | rot.-PED | 3.62 |
Perfect rotating magnetic dipole | rot.-MgD | 4.38 |
Perfect transverse electric (perfect azimuthal vortex) | rot.-PTE | 3.33 |
Perfect transverse magnetic (perfect radial vortex) | rot.-PTM | 6.82 |
Perfect radial electric dipole | PTM | 3.26 |
Circular polarized aplanatic 4PI | c-Apl 4Pi | 3.08 |
Circular polarized Herschel 4Pi | c-Hr 4Pi | 2.93 |
Circular polarized mixed dipole 4Pi | c-MxD 4Pi | 3.08 |
Rotating electric dipole 4Pi | rot.-ED 4Pi | 2.98 |
Rotating magnetic dipole 4Pi | rot.-MgD 4Pi | 3.24 |
Transverse electric (azimuthal vortex) 4Pi | rot.-TE 4Pi | 2.87 |
Transverse magnetic (radial vortex) 4Pi | rot.-TM 4Pi | 3.33 |
Radial electric dipole 4Pi | TM 4Pi | 2.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheppard, C.J.R. Focusing Hemispherical Waves. Photonics 2025, 12, 63. https://doi.org/10.3390/photonics12010063
Sheppard CJR. Focusing Hemispherical Waves. Photonics. 2025; 12(1):63. https://doi.org/10.3390/photonics12010063
Chicago/Turabian StyleSheppard, Colin J. R. 2025. "Focusing Hemispherical Waves" Photonics 12, no. 1: 63. https://doi.org/10.3390/photonics12010063
APA StyleSheppard, C. J. R. (2025). Focusing Hemispherical Waves. Photonics, 12(1), 63. https://doi.org/10.3390/photonics12010063