Design, Analysis, and Implementation of the Subdivision Interpolation Technique for the Grating Interferometric Micro-Displacement Sensor
Abstract
:1. Introduction
2. Effect of Errors on Interpolation Accuracy
3. High-Resolution Digital Readout Circuit
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chena, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement technologies for precision positioning. Cirp. Ann.-Manuf. Techn. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Zhai, S.H.; Shi, J.L.; Yu, P.; Yang, T.; Yang, Y.; Su, C.M.; Liu, L.Q. Noncontact subnanometer resolution displacement sensing with wide bandwidth based on squeeze film damping effect. IEEE Trans. Instrum. Meas. 2023, 72, 1009211. [Google Scholar] [CrossRef]
- Ghaffar, A.; Li, Q.; Haider, S.A.; Sun, A.; Leal-Junior, A.G.; Xu, L.F.; Chhattal, M.; Mehdi, M. A simple and high-resolution POF displacement sensor based on face-coupling method. Measurement 2022, 187, 110285. [Google Scholar] [CrossRef]
- Sandra, K.R.; Georg, B.; Kumar, J.V. Combined variable reluctance-hall effect displacement sensor. IEEE Trans. Instrum. Meas. 2018, 67, 1169–1177. [Google Scholar] [CrossRef]
- Zhang, W.L.; Bu, Z.X.; Li, J.Y.; Wu, Y.C.; Wang, L.Y. A new fabrication method for capacitive displacement sensor. IEEE Sens. J. 2024, 24, 13856–13862. [Google Scholar] [CrossRef]
- Liu, X.K.; Peng, K.; Chen, Z.R.; Pu, H.J.; Yu, Z.C. A new capacitive displacement sensor with nanometer accuracy and long range. IEEE Sens. J. 2016, 16, 2306–2316. [Google Scholar] [CrossRef]
- Daul, L.; Tao, J.; Busch, I.; Koenders, L.; Meess, R.; Wolff, H. Non-contact, automated adjustment procedure for capacitive displacement sensors. Meas. Sci. Technol. 2022, 33, 014004. [Google Scholar] [CrossRef]
- Liu, X.K.; Huang, R.; Yu, Z.C.; Peng, K.; Pu, H.J. A high-accuracy capacitive absolute time-grating linear displacement sensor based on a multi-stage composite method. IEEE Sens. J. 2021, 21, 8969–8978. [Google Scholar] [CrossRef]
- Bazaei, A.; Boudaoud, M.; Ettefagh, M.H.; Chen, Z.Y.; Régnier, S. Displacement sensing by piezoelectric transducers in high-speed lateral nanopositioning. IEEE Sens. J. 2019, 19, 9156–9165. [Google Scholar] [CrossRef]
- Barber, M.E.; Steppke, A.; Mackenzie, A.P.; Hicks, C.W. Piezoelectric-based uniaxial pressure cell with integrated force and displacement sensors. Rev. Sci. Instrum. 2019, 90, 023904. [Google Scholar] [CrossRef]
- Nurkowski, J.; Nowakowski, A. Inductive sensor for measuring linear displacement and velocity-Version with stationary magnetic core. Measurement 2023, 222, 113675. [Google Scholar] [CrossRef]
- Ripka, P.; Blazek, J.; Mirzaei, M.; Lipovsky, P.; Smelko, M.; Draganová, K. Inductive position and speed sensor. Sensors 2020, 20, 65. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.K.; Yang, B.T.; Niu, M.Q. Dynamic/static displacement sensor based on magnetoelectric composites. Appl. Phys. Lett. 2018, 113, 032903. [Google Scholar] [CrossRef]
- Yang, Y.K.; Yang, B.T. Displacement sensor with nanometric resolution based on magnetoelectric effect. IEEE Sens. J. 2021, 21, 12084–12091. [Google Scholar] [CrossRef]
- Hu, P.C.; Chang, D.; Tan, J.B.; Yang, R.T.; Yang, H.X.; Fu, H.J. Displacement measuring grating interferometer: A review. Front. Inform. Tech. Electron. Eng. 2019, 20, 631–654. [Google Scholar] [CrossRef]
- Lin, J.; Guan, J.; Wen, F.; Tan, J.B. High-resolution and wide range displacement measurement based on planar grating. Opt. Commun. 2017, 404, 132–138. [Google Scholar] [CrossRef]
- Ye, G.Y.; Liu, H.; Lei, B.; Niu, D.; Xing, H.W.; Wei, P.P.; Lu, B.H.; Liu, H.Z. Optimal design of a reflective diffraction grating scale with sine-trapezoidal groove for interferential optical encoders. Opt. Lasers Eng. 2020, 134, 106196. [Google Scholar] [CrossRef]
- Salbut, L.; Lukaszewski, D.; Piekarska, A. Grating (Moiré) microinterferometric displacement/strain sensor with polarization phase shift. Sensors 2024, 24, 2774. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, M.D.; Guo, L.J.; Yang, Z.Y.; Li, M.W.; Xin, C.G. 3DOF displacement sensor based on the self-imaging effect of optical micro-gratings. Appl. Opt. 2024, 63, 3984–3990. [Google Scholar] [CrossRef]
- Yu, H.; Wan, Q.H.; Mu, Z.Y.; Du, Y.C.; Liang, L.H. Novel nano-scale absolute linear displacement measurement based on grating projection imaging. Measurement 2021, 182, 109738. [Google Scholar] [CrossRef]
- Yu, H.; Wan, Q.H.; Liang, L.H.; Du, Y.C.; Lu, X.R. Error analysis and compensation method of displacement measurements based on reflection projection imaging. Opt. Lasers Eng. 2023, 161, 107401. [Google Scholar] [CrossRef]
- Zhao, G.B.; Ye, G.Y.; Liu, H.; Lei, B.; Li, X.; Han, W.L.; Liu, H.Z. Electronic interpolation interface based on linear subdivision method for sinusoidal optical encoders. IEEE Sens. J. 2020, 20, 3646–3654. [Google Scholar] [CrossRef]
- Odinokov, S.; Shishova, M.; Kovalev, M.; Zherdev, A.; Lushnikov, D. Phase imbalance optimization in interference linear displacement sensor with surface gratings. Sensors 2020, 20, 1453. [Google Scholar] [CrossRef]
- Williams, R.P.; Hord, S.K.; Hall, N.A. Optically read displacement detection using phase-modulated diffraction gratings with reduced zeroth-order reflections. Appl. Phys. Lett. 2017, 110, 151104. [Google Scholar] [CrossRef]
- Van Gorp, B.; Onaran, A.G.; Degertekin, F.L. Integrated dual grating method for extended range interferometric displacement detection in probe microscopy. Appl. Phys. Lett. 2007, 91, 083101. [Google Scholar] [CrossRef]
- Xiao, Q.X.; Wu, S.; Wang, Y.A.; Liu, C.X.; Feng, W.L.; Yao, Y.; Huang, P.F.; Wang, X.X.; Lu, Q.B. Error analysis and realization of a phase-modulated diffraction grating used as a displacement senso. Opt. Express 2023, 31, 7907–7921. [Google Scholar] [CrossRef]
- Li, M.W.; Liang, Z.X.; Zhang, R.; Wu, Q.N.; Xin, C.G.; Jin, L.; Xie, K.Y.; Zhao, H.B. Large-scale range diffraction grating displacement sensor based on polarization phase-shifting. Appl. Opt. 2020, 59, 469–473. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, R.; Niu, Q.Q.; Ma, X.C.; Yang, Z.Y.; Li, M.W.; Xin, C.G. Out-of-plane displacement sensor based on the Talbot effect in angular-modulated double-layer optical gratings. Appl. Opt. 2022, 61, 9873–9878. [Google Scholar] [CrossRef]
- Zhao, H.B.; Li, M.W.; Zhang, R.; Wang, Z.B.; Xie, K.Y.; Xin, C.G.; Jin, L.; Liang, Z.X. High-precision microdisplacement sensor based on zeroth-order diffraction using a single-layer optical grating. Appl. Opt. 2020, 5, 16–21. [Google Scholar] [CrossRef]
- Nuntakulkaisak, T.; Bavontaweepanya, R.; Infahsaeng, Y.; Wongjom, P.; Pijitrojana, W.; Suwanna, S.; Pongophas, E. Nanometer-scale displacement measurement using a simple diffraction grating with a quadrature detection technique. Opt. Lett. 2022, 47, 5156–5159. [Google Scholar] [CrossRef]
- Lu, Q.B.; Wang, C.; Bai, J.; Wang, K.W.; Lian, W.X.; Lou, S.Q.; Jiao, X.F.; Yang, G.G. Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl. Opt. 2015, 54, 4188–4196. [Google Scholar] [CrossRef]
Error Percentage of 1% | Error Percentage of 5% | Error Percentage of 10% | |
---|---|---|---|
Phase error | 99.00% | 95.23% | 90.92% |
Offset error | 99.11% | 95.69% | 91.73% |
Amplitude error | 99.37% | 96.98% | 92.07% |
Characteristic and Abilities | This Work | M. W. Li [27] (2020) | Nuntakulkaisak [30] (2022) | X. K. Liu [8] (2021) | Q. B. Lu [31] (2015) |
---|---|---|---|---|---|
Methods | Interpolation | Interpolation | Quadrature detection technique | Time grating | Phase modulation |
Continuous correction | Yes | No | No | No | No |
Offset compensation | Yes | No | No | No | No |
Phase calibration | Yes | Yes | No | No | No |
Time-delay removal | Yes | No | No | No | No |
Interpolation factor | 208 | 100 | / | / | / |
Resolution | 1.9 nm | 3.175 nm (Calculation) | 0.4 nm (Calculation) | / | 0.017 nm (Calculation) |
Accuracy | 0.6 μm (99.8%) | 2.2 nm (99.2%) | 98.2% | 0.2 μm (99.9%) | / |
Displacement range | 300 μm | 250 nm | Nanometer scale | 200 mm | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Peng, H.; Yang, P.; Guo, S.; Sun, W.; Jin, L.; Xie, K.; Li, M. Design, Analysis, and Implementation of the Subdivision Interpolation Technique for the Grating Interferometric Micro-Displacement Sensor. Photonics 2025, 12, 64. https://doi.org/10.3390/photonics12010064
Tang J, Peng H, Yang P, Guo S, Sun W, Jin L, Xie K, Li M. Design, Analysis, and Implementation of the Subdivision Interpolation Technique for the Grating Interferometric Micro-Displacement Sensor. Photonics. 2025; 12(1):64. https://doi.org/10.3390/photonics12010064
Chicago/Turabian StyleTang, Jiuhui, Haifeng Peng, Peng Yang, Shangzhou Guo, Wenqiang Sun, Li Jin, Kunyang Xie, and Mengwei Li. 2025. "Design, Analysis, and Implementation of the Subdivision Interpolation Technique for the Grating Interferometric Micro-Displacement Sensor" Photonics 12, no. 1: 64. https://doi.org/10.3390/photonics12010064
APA StyleTang, J., Peng, H., Yang, P., Guo, S., Sun, W., Jin, L., Xie, K., & Li, M. (2025). Design, Analysis, and Implementation of the Subdivision Interpolation Technique for the Grating Interferometric Micro-Displacement Sensor. Photonics, 12(1), 64. https://doi.org/10.3390/photonics12010064