A Novel Flip-Filtered Orthagonal Frequency Division Multiplexing-Based Visible Light Communication System: Peak-to-Average-Power Ratio Assessment and System Performance Improvement
Abstract
:1. Introduction
2. System Model
2.1. The Conventional Flip-F-OFDM
2.2. The Proposed Flip-Filtered OFDM
2.2.1. Transmitter
2.2.2. Receiver
2.2.3. Optical Channel Model
3. Result Analysis and Discussion
3.1. Spectral Efficiency and Data Rate Analysis
3.2. Signal-to-Noise Ratio (SNR)
3.3. Bit Error Rate Analysis
3.4. System Complexity
3.5. Peak-to-Average-Power Ratio (PAPR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rakhi, K.J.; Jayakumari, J. Design of flip-OFDM system for optical wireless communication. In Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Mazahir, S.; Chaaban, A.; Elgala, H.; Alouini, M.S. Achievable Rates of Multi-Carrier Modulation Schemes for Bandlimited IM/DD Systems. IEEE Trans. Wirel. Commun. 2019, 18, 1957–1973. [Google Scholar] [CrossRef]
- Dawoud, D.W.; Héliot, F.; Imran, M.A.; Tafazolli, R. A Novel Unipolar Transmission Scheme for Visible Light Communication. IEEE Trans. Commun. 2020, 68, 2426–2437. [Google Scholar] [CrossRef]
- Gunturu, C.; Valluri, S. A new complexity reduction scheme in selective mapping-based visible light communication direct current-biased optical orthogonal frequency division multiplexing systems. IET Optoelectron. 2022, 16, 207–217. [Google Scholar] [CrossRef]
- Liu, M.; Xue, W.; Xu, Y.; Makarov, S.B. Design of filters based on generic function model for reducing out-of-band emissions of the F-OFDM systems. AEU-Int. J. Electron. Commun. 2021, 139, 153908. [Google Scholar] [CrossRef]
- Lowery, A.J. Spectrally efficient optical orthogonal frequency division multiplexing. Philos. Trans. R. Soc. A 2020, 378, 20190180. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, J.; Huang, N.; Zhang, W. Improved Receivers for Optical Wireless OFDM: An Information Theoretic Perspective. IEEE Trans. Commun. 2022, 70, 4439–4453. [Google Scholar] [CrossRef]
- Chen, M.; Chen, G.; Chen, W.; Yin, L.; Zuo, J.; Cheng, Q.; Qian, S.; Zhou, H.; Chen, Q. Real-Time Generation of NHS-OFDM Signal for Direct-Modulation and Direct-Detection PON. IEEE Photonics Technol. Lett. 2021, 33, 533–536. [Google Scholar] [CrossRef]
- Cvijetic, N. OFDM for Next-Generation Optical Access Networks. J. Light. Technol. 2012, 30, 384–398. [Google Scholar] [CrossRef]
- Chen, M.; Liu, G.; Zhang, L.; Wang, X.; Zhou, H.; Chen, Q.; Xiang, C. Hardware-efficient implementation and experimental demonstration of Hermitian-symmetric IFFT for optical DMT transmitter. Opt. Express 2019, 27, 29817–29828. [Google Scholar] [CrossRef] [PubMed]
- Sanya, M.F.; Djogbe, L.; Vianou, A.; Aupetit-Berthelemot, C. DC-biased optical OFDM for IM/DD passive optical network systems. J. Opt. Commun. Netw. 2015, 7, 205–214. [Google Scholar] [CrossRef]
- Azim, A.W.; Le Guennec, Y.; Maury, G. Hermitian symmetry free optical-single-carrier frequency division multiple access for visible light communication. Opt. Commun. 2018, 415, 177–185. [Google Scholar] [CrossRef]
- Yang, R.; Ma, S.; Xu, Z.; Li, H.; Liu, X.; Ling, X.; Deng, X.; Zhang, X.; Li, S. Spectral and Energy Efficiency of DCO-OFDM in Visible Light Communication Systems With Finite-Alphabet Inputs. IEEE Trans. Wirel. Commun. 2022, 21, 6018–6032. [Google Scholar] [CrossRef]
- Dissanayake, S.D.; Armstrong, J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Light. Technol. 2013, 31, 1063–1072. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Zhang, W.; Wang, C.X. Filtered-OFDM for Visible Light Communications. In Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Beijing, China, 16–18 August 2018; pp. 227–231. [Google Scholar] [CrossRef]
- Ramadan, K.; ElHalawany, B.M.; Elbakry, M.S. Performance improvement for DCO-OFDM and ACO-OFDM systems using symbol time compression. Telecommun. Syst. 2023, 84, 77–100. [Google Scholar] [CrossRef]
- Wu, L.; Kong, L.; Zhang, Z.; Dang, J.; Liu, H. Wide-range Dimmable Clipped Flip-OFDM For Indoor Visible Light Communications. In Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC), Beijing, China, 16–18 August 2018; pp. 121–125. [Google Scholar] [CrossRef]
- Saengudomlert, P.; Buddhacharya, S. Modulation Classification between DCO-OFDM and Flip-OFDM for Visible Light Communications. In Proceedings of the 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Phuket, Thailand, 5–8 July 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Farid, S.M.; Saleh, M.Z.; Elbadawy, H.M.; Elramly, S.H. Novel Unipolar Optical Modulation Techniques for Enhancing Visible Light Communication Systems Performance. IEEE Access 2022, 10, 67925–67939. [Google Scholar] [CrossRef]
- Sharan, N.; Ghorai, S. PAPR reduction and non-linearity alleviation using hybrid of precoding and companding in a visible light communication (VLC) system. Opt. Quantum Electron. 2020, 52, 304. [Google Scholar] [CrossRef]
- Ullah, H.; Sohail, M.; Bokhari, M. Dynamic range of LED in optical OFDM for PAPR performance analysis. Opt. Quantum Electron. 2022, 54, 742. [Google Scholar] [CrossRef]
- Nawaf, S.F.; Bouallegue, A. Investigation the Performance of ACO-OFDM, DCO-OFDM in Visible Light Communication System. In Proceedings of the 2023 22nd Mediterranean Microwave Symposium (MMS), Depok, Indonesia, 4–5 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Alrakah, H.; Hijazi, M.; Sinanovic, S.; Popoola, W. Clipping noise in visible light communication systems with OFDM and PAPR reduction. Photonics 2024, 11, 643. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, T.; Wang, Q. Optical OFDM for visible light communications. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 1190–1194. [Google Scholar] [CrossRef]
- Koti, J.; B K, M. Performance Analysis of Unipolar CommunicationTechniques for Optical Wireless Communication. In Proceedings of the 2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS), Bangalore, India, 27–28 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hameed, S.M.; Sabri, A.A.; Abdulsatar, S.M. A novel PAPR reduction method for ADO-OFDM VLC systems. Opt. Quantum Electron. 2021, 53, 595. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Ghassemlooy, Z.; Olyaee, S. Investigation of a hybrid OFDM-PWM/PPM visible light communications system. Opt. Commun. 2018, 429, 65–71. [Google Scholar] [CrossRef]
- Shi, Z.; Miao, P.; Pang, L.; Zhang, Y. A Novel OFDM-Based Time Domain Quadrature GSM for Visible Light Communication System. Electronics 2023, 13, 71. [Google Scholar] [CrossRef]
- Fernando, N.; Hong, Y.; Viterbo, E. Flip-OFDM for Unipolar Communication Systems. IEEE Trans. Commun. 2012, 60, 3726–3733. [Google Scholar] [CrossRef]
- Choudhary, U.; Janyani, V. Bandwidth efficient frame structures for flip OFDM with phase conjugated subcarriers and LDPC encoding. Optik 2020, 204, 164175. [Google Scholar] [CrossRef]
- Temurtaş, S.; Toprakcı, G.; Özen, A. Enhancing the Performance of Flip-OFDM Systems with Channel Coding Techniques for Visible Light Communications. In Proceedings of the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, Mauritius, 7–8 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Huang, N.; Wang, J.B.; Pan, C.; Wang, J.Y.; Pan, Y.; Chen, M. Iterative Receiver for Flip-OFDM in Optical Wireless Communication. IEEE Photonics Technol. Lett. 2015, 27, 1729–1732. [Google Scholar] [CrossRef]
- Saengudomlert, P. Flip wavelet packet modulation for visible light communications with intensity modulation and direct detection. In Proceedings of the 2017 International Electrical Engineering Congress (iEECON), Pattaya, Thailand, 8–10 March 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Shah, N.S.M.; Ghawbar, F.; Jawhar, Y.A.; Almohammedi, A.A. Filtered-OFDM with channel coding based on T-distribution noise for underwater acoustic communication. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 3379–3392. [Google Scholar] [CrossRef]
- Ramadhan, A.J. Overview and comparison of candidate 5G waveforms: FBMC, UFMC and F-OFDM. Int. J. Comput. Netw. Inf. Secur. 2022, 11, 27. [Google Scholar] [CrossRef]
- Loulou, A.; Yli-Kaakinen, J.; Levanen, T.; Lehtinen, V.; Schaich, F.; Wild, T.; Renfors, M.; Valkama, M. Multiplierless filtered-OFDM transmitter for narrowband IoT devices. IEEE Internet Things J. 2019, 7, 846–862. [Google Scholar] [CrossRef]
- Barrami, F.; Le Guennec, Y.; Novakov, E.; Duchamp, J.M.; Busson, P. A novel FFT/IFFT size efficient technique to generate real time optical OFDM signals compatible with IM/DD systems. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 6–10 October 2013; pp. 1247–1250. [Google Scholar]
- Hujijo, H.S.R.; Ilyas, M. Enhancing spectral efficiency with low complexity filtered-orthogonal frequency division multiplexing in visible light communication system. ETRI J. 2024, 46, 1007–1019. [Google Scholar] [CrossRef]
- Huawei, H. F-OFDM Scheme and Filter Design. In Proceedings of the 3GPP Contribution R1-165425, Nanjing, China, 23–27 May 2016. [Google Scholar]
- Fernando, N.; Hong, Y.; Viterbo, E. Flip-OFDM for optical wireless communications. In Proceedings of the 2011 IEEE Information Theory Workshop, Paraty, Brazil, 16–20 October 2011; pp. 5–9. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Y.; Gong, C.; Huang, N. Noise Analysis and Modulation Optimization for Nonlinear Visible Light Communication System With Signal-Dependent Noise. IEEE Photonics J. 2023, 15, 1–11. [Google Scholar] [CrossRef]
- Armstrong, J.; Schmidt, B.J. Comparison of Asymmetrically Clipped Optical OFDM and DC-Biased Optical OFDM in AWGN. IEEE Commun. Lett. 2008, 12, 343–345. [Google Scholar] [CrossRef]
- Zenhom, Y.A.; Hamad, E.K.; Alghassab, M.; Elnabawy, M.M. Optical-OFDM VLC System: Peak-to-Average Power Ratio Enhancement and Performance Evaluation. Sensors 2024, 24, 2965. [Google Scholar] [CrossRef]
- Karakoç, E.; Şenel, M.C.; Özen, B.; Özen, A. A Novel Hermitian Symmetriless Optical OFDM Technique for Visible Light Communication Systems. In Proceedings of the 2022 30th Signal Processing and Communications Applications Conference (SIU), Safranbolu, Turkey, 15–18 May 2022; IEEE: New York, NY, USA, 2022; pp. 1–4. [Google Scholar]
- Bouziane, R.; Milder, P.A.; Koutsoyannis, R.J.; Benlachtar, Y.; Hoe, J.C.; Glick, M.; Killey, R.I. Dependence of optical OFDM transceiver ASIC complexity on FFT size. In Proceedings of the OFC/NFOEC, Los Angeles, CA, USA, 4–8 March 2012; pp. 1–3. [Google Scholar]
- Al-Jawhar, Y.A.; Ramli, K.N.; Taher, M.A.; Shah, N.S.M.; Mostafa, S.A.; Khalaf, B.A. Improving PAPR performance of filtered OFDM for 5G communications using PTS. ETRI J. 2021, 43, 209–220. [Google Scholar] [CrossRef]
- Johnson, S.G.; Frigo, M. A Modified Split-Radix FFT With Fewer Arithmetic Operations. IEEE Trans. Signal Process. 2007, 55, 111–119. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Farid, S.M.; Saleh, M.Z.; Elbadawy, H.M.; Elramly, S.H. ASCO-OFDM based VLC system throughput improvement using PAPR precoding reduction techniques. Opt. Quantum Electron. 2023, 55, 410. [Google Scholar] [CrossRef]
- Zenhom, Y.A.; Hamad, E.K.; Elnabawy, M.M. Throughput improvement in ACO-OFDM-based VLC systems using noise cancellation and precoding techniques. Opt. Quantum Electron. 2024, 56, 1798. [Google Scholar] [CrossRef]
Technique | Transmitted Rate | Transmitted Rate Ratio | Spectral Efficiency |
---|---|---|---|
Proposed Flip F-OFDM | N | 100% | |
Conventional Flip F-OFDM | N/2 | 50% | |
HSF Flip-OFDM [44] | N | 100% | |
Flip-OFDM [19,43] | N/4 | 25% | |
ACO-OFDM [19,37,43] | N/4 | 25% | |
DCO-OFDM [14,19,43] | N/2 | 50% |
Parameter | Values |
---|---|
IFFT/FFT size | 1024 |
No. of F-OFDM symbols | 1000 |
No. of subcarriers | 600 |
Filter type | Raised cosine |
Modulation technique | QAM |
Cyclic prefix | 72 |
Constellation order | 4, 16, 64, 256 |
Channel model | AWGN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hujijo, H.S.R.; Ilyas, M. A Novel Flip-Filtered Orthagonal Frequency Division Multiplexing-Based Visible Light Communication System: Peak-to-Average-Power Ratio Assessment and System Performance Improvement. Photonics 2025, 12, 69. https://doi.org/10.3390/photonics12010069
Hujijo HSR, Ilyas M. A Novel Flip-Filtered Orthagonal Frequency Division Multiplexing-Based Visible Light Communication System: Peak-to-Average-Power Ratio Assessment and System Performance Improvement. Photonics. 2025; 12(1):69. https://doi.org/10.3390/photonics12010069
Chicago/Turabian StyleHujijo, Hayder S. R., and Muhammad Ilyas. 2025. "A Novel Flip-Filtered Orthagonal Frequency Division Multiplexing-Based Visible Light Communication System: Peak-to-Average-Power Ratio Assessment and System Performance Improvement" Photonics 12, no. 1: 69. https://doi.org/10.3390/photonics12010069
APA StyleHujijo, H. S. R., & Ilyas, M. (2025). A Novel Flip-Filtered Orthagonal Frequency Division Multiplexing-Based Visible Light Communication System: Peak-to-Average-Power Ratio Assessment and System Performance Improvement. Photonics, 12(1), 69. https://doi.org/10.3390/photonics12010069