Theoretical Investigation of Terahertz Spoof Surface-Plasmon-Polariton Devices Based on Ring Resonators
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Band-Stop Filter
3.2. Add–Drop Multiplexer (ADM)
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Nie, B.; Zhang, C.; Li, Y.; Gao, J.; Wang, X. Terahertz Non-destructive Imaging System Applied on Composite Materials Testing. In Proceedings of the 5th China and International Young Scientist Terahertz Conference, Chengdu, China, 22–24 March 2024; Chang, C., Zhang, Y., Zhao, Z., Zhu, Y., Eds.; Springer Nature: Singapore; Volume 2, pp. 56–60. [Google Scholar]
- Fukasawa, R. Terahertz Imaging: Widespread Industrial Application in Non-Destructive Inspection and Chemical Analysis. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 1121–1127. [Google Scholar]
- Zhang, X.C. Terahertz wave imaging: Horizons and hurdles. Phys. Med. Biol. 2002, 47, 3667. [Google Scholar] [CrossRef] [PubMed]
- Ellrich, F.; Bauer, M.; Schreiner, N.; Keil, A.; Pfeiffer, T.; Klier, J.; Weber, S.; Jonuscheit, J.; Friederich, F.; Molter, D. Terahertz Quality Inspection for Automotive and Aviation Industries. J. Infrared Millim. Terahertz Waves 2020, 41, 470–489. [Google Scholar] [CrossRef]
- Tzydynzhapov, G.; Gusikhin, P.; Muravev, V.; Dremin, A.; Nefyodov, Y.; Kukushkin, I. New Real-Time Sub-Terahertz Security Body Scanner. J. Infrared Millim. Terahertz Waves 2020, 41, 632–641. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, C.; Wu, X.; Zhu, Y.; Zhuang, S. Terahertz Imaging and Spectroscopy in Cancer Diagnostics: A Technical Review. BME Front. 2020, 2020, 2547609. [Google Scholar] [CrossRef]
- Chen, Z.; Han, C.; Yu, X.; Wang, G.; Yang, N.; Peng, M. Terahertz wireless communications. China Commun. 2021, 18, iii–vii. [Google Scholar] [CrossRef]
- Han, Z.; Bozhevolnyi, S.I.; Bhushan, S.; Chauhan, V.S.; Easwaran, R.K. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 2012, 76, 016402. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Genet, C.; Bozhevolnyi, S.I. Surface-plasmon circuitry. Phys. Today 2008, 61, 44–50. [Google Scholar] [CrossRef]
- Jiang, Z.; Lu, J.; Fan, J.; Liang, J.; Zhang, M.; Su, H.; Zhang, L.; Liang, H. Polarization-Multiplexing Bessel Vortex Beams for Polarization Detection of Continuous Terahertz Waves. Laser Photonics Rev. 2023, 17, 2200484. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, T.; Zhang, J.; Liu, L.; Xie, J.; Wang, G.; Yao, J.; Zhu, W.; Ye, X. Terahertz Toroidal Metasurface Biosens. Sensitive Distinct. Lung Cancer Cells 2022, 11, 101–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Y.; Ling, H.; Zhang, J.; Li, K.; Yuan, C.; Ma, H.; Huang, W.; Wang, Q.; Su, X. Label-free diagnosis of ovarian cancer using spoof surface plasmon polariton resonant biosensor. Sens. Actuators B Chem. 2022, 352, 130996. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging—Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Haxha, S.; AbdelMalek, F.; Ouerghi, F.; Charlton, M.D.B.; Aggoun, A.; Fang, X. Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications. Sci. Rep. 2018, 8, 16119. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z. Superlenses to overcome the diffraction limit. Nat. Mater. 2008, 7, 435–441. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Liu, K.; Li, H.; Lang, Y.; Han, J.; Wang, Q.; Lu, Y.; Dai, J.; Cao, T.; et al. Terahertz multi-level nonvolatile optically rewritable encryption memory based on chalcogenide phase-change materials. iScience 2022, 25, 104866. [Google Scholar] [CrossRef]
- Bhushan, S.; Chauhan, V.S.; Easwaran, R.K. Ultracold Rydberg atoms for efficient storage of terahertz frequency signals using electromagnetically induced transparency. Phys. Lett. A 2018, 382, 3500–3504. [Google Scholar] [CrossRef]
- Okamoto, H.; Onishi, S.; Kataoka, M.; Yamaguchi, K.; Haraguchi, M.; Okamoto, T. Characteristics of double-plasmonic-racetrack resonator to increase quality factor. Opt. Rev. 2013, 20, 26–30. [Google Scholar] [CrossRef]
- Bozhevolnyi, S.I.; Volkov, V.S.; Devaux, E.; Laluet, J.-Y.; Ebbesen, T.W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006, 440, 508–511. [Google Scholar] [CrossRef]
- Kryukov, A.E.; Kim, Y.K.; Ketterson, J.B. Surface plasmon scanning near-field optical microscopy. J. Appl. Phys. 1997, 82, 5411–5415. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lundquist, P.M.; Helfrich, J.A.; Mikrut, J.M.; Wong, G.K.; Auvil, P.R.; Ketterson, J.B. Scanning plasmon optical microscope. Appl. Phys. Lett. 1995, 66, 3407–3409. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Xu, B.; Ning, P.; Chen, C.; Xu, J.; Chen, X.; Gu, C.; Qing, Q. High-Contrast Gratings based Spoof Surface Plasmons. Sci. Rep. 2016, 6, 21199. [Google Scholar] [CrossRef]
- Pandey, S.S.; Gupta, B.; Nahata, A. Terahertz plasmonic waveguides created via 3D printing. Opt. Express 2013, 21, 24422–24430. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Z.; Xu, B.; Gu, C.; Chen, X.; Sun, H.; Zhou, Y.; Qing, Q.; Shum, P.; Luo, Y. Ultra-Low-Loss High-Contrast Gratings Based Spoof Surface Plasmonic Waveguide. IEEE Trans. Microw. Theory Tech. 2017, 65, 2008–2018. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking Surface Plasmons with Structured Surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, P.; Han, Z. One-Dimensional Spoof Surface Plasmon Structures for Planar Terahertz Photonic Integration. J. Light. Technol. 2015, 33, 3796–3800. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Tian, C.; Xu, Q.; Zhang, X.; Li, Y.; Zhang, X.; Han, J.; Zhang, W.; Yariv, A.; et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide. Photonics Res. 2018, 6, 18–23. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, X.; Lu, C.; Yue, S.; Yang, H.; Gong, Q. All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides. Nano Lett. 2012, 12, 5784–5790. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Yuan, M.; Xu, Y.; Xu, Q.; Yang, Q.; Liu, Y.; Gu, J.; Li, Y.; Tian, Z.; et al. Rotated Pillars for Functional Integrated On-Chip Terahertz Spoof Surface-Plasmon-Polariton Devices. Adv. Opt. Mater. 2022, 10, 2102561. [Google Scholar] [CrossRef]
- Gu, S.; Yuan, X.; Liu, L.; Sun, M.; Zhang, Y.; Xu, Q.; Han, J. Terahertz spoof surface plasmon polariton gradient index lens. Results Phys. 2023, 47, 106332. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Xu, Q.; Han, J. Design of terahertz plasmonic wavelength division multiplexer assisted by whispering gallery mode resonators. Opt. Quantum Electron. 2023, 55, 927. [Google Scholar] [CrossRef]
- Demirtzioglou, I.; Lacava, C.; Bottrill, K.R.H.; Thomson, D.J.; Reed, G.T.; Richardson, D.J.; Petropoulos, P.; Heebner, J.E.; Vincent, W.; Schweinsberg, A.; et al. Frequency comb generation in a silicon ring resonator modulator. Opt. Express 2018, 26, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Heebner, J.E.; Vincent, W.; Schweinsberg, A.; Boyd, R.W.; Jackson, D.J. Optical transmission characteristics of fiber ring resonators. IEEE J. Quantum Electron. 2004, 40, 726–730. [Google Scholar] [CrossRef]
- Hou, L.; Tang, S.; Hou, B.; Marsh, J.H. Photonic integrated circuits for terahertz source generation. IET Optoelectron. 2020, 14, 136–142. [Google Scholar] [CrossRef]
- Cheng, Q.; Kwon, J.; Glick, M.; Bahadori, M.; Carloni, L.P.; Bergman, K. Silicon Photonics Codesign for Deep Learning. Proc. IEEE 2020, 108, 1261–1282. [Google Scholar] [CrossRef]
- Yariv, A.; Yeh, P.A. Photonics: Optical Electronics in Modern Communications; The Oxford Series in Electrical and Computer Engineering; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Vaidyanathan, P.P. Chapter 5—Low-Noise and Low-Sensitivity Digital Filters. In Handbook of Digital Signal Processing; Elliott, D.F., Ed.; Academic Press: Cambridge, MA, USA, 1987; pp. 359–479. [Google Scholar]
- Ou, X.; Yang, Y.; Sun, F.; Zhang, P.; Tang, B.; Li, B.; Liu, R.; Liu, D.; Li, Z. Wide-range, ultra-compact, and high-sensitivity ring resonator biochemical sensor with CMOS-compatible hybrid plasmonic waveguide. Opt. Express 2021, 29, 19058–19067. [Google Scholar] [CrossRef]
- Fang, S.; Yang, Z.; Tao, Y.; Lv, W.; Jiang, J.; Zhang, D.-Q.; Wang, B.-X.; Yang, G.; Shu, F.-Z. Design and experimental realization of triple-band filtering metamaterial in sub-terahertz band enabled by conductivity coupling response of two identical split rings. Opt. Laser Technol. 2025, 183, 112345. [Google Scholar] [CrossRef]
- Esfandiyari, M.; Lalbakhsh, A.; Jarchi, S.; Ghaffari-Miab, M.; Mahtaj, H.N.; Simorangkir, R.B.V.B. Tunable terahertz filter/antenna-sensor using graphene-based metamaterials. Mater. Des. 2022, 220, 110855. [Google Scholar] [CrossRef]
- Li, H.-J.; Ren, Y.-Z.; Qin, M.; Wang, L.-L. Multispectral perfect absorbers using plasmonically induced interference. J. Appl. Phys. 2018, 123, 203102. [Google Scholar] [CrossRef]
- Li, H.J.; Wang, L.L.; Zhai, X. Plasmonically Induced Absorption and Transparency Based on MIM Waveguides with Concentric Nanorings. IEEE Photonics Technol. Lett. 2016, 28, 1454–1457. [Google Scholar] [CrossRef]
- Tan, Y.; Dai, D. Silicon microring resonators. J. Opt. 2018, 20, 054004. [Google Scholar] [CrossRef]
- Yoneyama, T.; Tozawa, N.; Nishida, S. Coupling Characteristics of Nonradiative Dielectric Waveguides. IEEE Trans. Microw. Theory Tech. 1983, 31, 648–654. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Gu, S.; Sun, M.; Liu, Y.; Zhang, Y.; Han, J. Theoretical Investigation of Terahertz Spoof Surface-Plasmon-Polariton Devices Based on Ring Resonators. Photonics 2025, 12, 70. https://doi.org/10.3390/photonics12010070
Liu C, Gu S, Sun M, Liu Y, Zhang Y, Han J. Theoretical Investigation of Terahertz Spoof Surface-Plasmon-Polariton Devices Based on Ring Resonators. Photonics. 2025; 12(1):70. https://doi.org/10.3390/photonics12010070
Chicago/Turabian StyleLiu, Can, Shenghao Gu, Mingming Sun, Ya Liu, Ying Zhang, and Jiaguang Han. 2025. "Theoretical Investigation of Terahertz Spoof Surface-Plasmon-Polariton Devices Based on Ring Resonators" Photonics 12, no. 1: 70. https://doi.org/10.3390/photonics12010070
APA StyleLiu, C., Gu, S., Sun, M., Liu, Y., Zhang, Y., & Han, J. (2025). Theoretical Investigation of Terahertz Spoof Surface-Plasmon-Polariton Devices Based on Ring Resonators. Photonics, 12(1), 70. https://doi.org/10.3390/photonics12010070