Wavelength Conversion Process of Intra-Pulse Stimulated Raman Scattering in Near-Zero Negative Dispersion Range
Abstract
:1. Introduction
2. Experimental Setup and Operating Principle
3. Results and Analysis
3.1. Preparation of Pumping Pulses with Different Parameters
3.2. Wavelength Conversion Processes in Highly Nonlinear Fiber with the Two Lengths of 400 m and 500 m Pumped by a Soliton Pulse with 8.56 nm Spectral Width and 445 fs Temporal Width
3.3. Wavelength Conversion Processes in Highly Nonlinear Fiber with the Two Lengths of 400 m and 500 m Pumped by a Soliton Pulse with 9.82 nm Spectral Width and 554 fs Temporal Width
3.4. Results of Raman Soliton Wavelength Redshift for the Pumping Pulse with the Two Sets of Parameters
3.5. SSFS Processes in Highly Nonlinear Fiber with Two Lengths of 400 m and 500 m Pumped by the Soliton Pulse with 11.30 nm Spectral Width and 318 fs Temporal Width
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitschke, F.M.; Mollenauer, L.F. Discovery of the soliton self-frequency shift. Opt. Lett. 1986, 11, 659–661. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.P. Theory of the soliton self-frequency shift. Opt. Lett. 1986, 11, 662–664. [Google Scholar] [CrossRef] [PubMed]
- Anashkina, E.A.; Andrianov, A.V.; Koptev, M.Y.; Mashinsky, V.M.; Muravyev, S.V.; Kim, A.V. Generating tunable optical pulses over the ultrabroad range of 1.6–2.5 µm in GeO2-doped silica fibers with an Er: Fiber laser source. Opt. Express 2012, 20, 27102–27107. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Usaki, R.; Duan, Z.; Gao, W.; Deng, D.; Liao, M.; Kanou, Y.; Matsumoto, M.; Misumi, T.; Suzuki, T.; et al. Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber. Opt. Express 2014, 22, 3740–3746. [Google Scholar] [CrossRef] [PubMed]
- Salem, R.; Jiang, Z.; Liu, D.; Pafchek, R.; Gardner, D.; Foy, P.; Saad, M.; Jenkins, D.; Cable, A.; Fendel, P. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm. Opt. Express 2015, 23, 30592–30602. [Google Scholar] [CrossRef] [PubMed]
- Koptev, M.Y.; Anashkina, E.A.; Andrianov, A.V.; Dorofeev, V.V.; Kosolapov, A.F.; Muravyev, S.V.; Kim, A.V. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber. Opt. Lett. 2015, 40, 4094–4097. [Google Scholar] [CrossRef]
- Tang, Y.; Wright, L.G.; Charan, K.; Wang, T.; Xu, C.; Wise, F.W. Generation of intense 100 fs solitons tunable from 2 to 4.3 µm in fluoride fiber. Optica 2016, 3, 948–951. [Google Scholar] [CrossRef]
- Duval, S.; Gauthier, J.C.; Robichaud, L.R.; Paradis, P.; Olivier, M.; Fortin, V.; Bernier, M.; Piché, M.; Vallée, R. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm. Opt. Lett. 2016, 41, 5294–5297. [Google Scholar] [CrossRef] [PubMed]
- Delahaye, H.; Granger, G.; Gomes, J.T.; Lavoute, L.; Gaponov, D.; Ducros, N.; Fevrier, S. Generation of 35 kW peak power 80 fs pulses at 2.9 μm from a fully fusion-spliced fiber laser. Opt. Lett. 2019, 44, 2318–2321. [Google Scholar] [CrossRef]
- Stoliarov, D.; Koviarov, A.; Korobko, D.; Galiakhmetova, D.; Rafailov, E. Fibre laser system with wavelength tuning in extended telecom range. Opt. Fiber Technol. 2022, 72, 102994. [Google Scholar] [CrossRef]
- Oda, S.; Maruta, A. All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation. Opt. Express 2006, 14, 7895–7902. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Matsui, H.; Nagashima, T.; Konishi, T. Resolution upgrade toward 6-bit optical quantization using power-to-wavelength conversion for photonic analog-to-digital conversion. Opt. Lett. 2013, 38, 4864–4867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z.; Wang, S.; Liang, D.; Li, H.; Liu, Y. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture. Opt. Commun. 2018, 410, 571–576. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Wang, B.T. Optical quantization based on soliton self-frequency shift and a flexible spectrum compression scheme utilizing time-dependent filtering. Opt. Express 2019, 27, 21435–21447. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, Y.; Gao, Y.; Yan, X.; Zhang, X.; Wang, F. Temperature sensing in a silica microstructured optical fiber based on soliton self-frequency shift. IEEE Trans. Instrum. Meas. 2021, 70, 9514409. [Google Scholar] [CrossRef]
- Chen, X.; Yan, X.; Zhang, X.; Wang, F.; Suzuki, T.; Ohishi, Y.; Cheng, T. Highly sensitive nonlinear temperature sensor based on soliton self-frequency shift technique in a microstructured optical fiber. Sens. Actuators A Phys. 2022, 334, 113333. [Google Scholar] [CrossRef]
- Sordillo, L.A.; Pu, Y.; Pratavieira, S.; Budansky, Y.; Alfano, R.R. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt. 2014, 19, 056004. [Google Scholar] [CrossRef] [PubMed]
- Chestnut, D.A.; Taylor, J.R. Soliton self-frequency shift in highly nonlinear fiber with extension by external Raman pumping. Opt. Lett. 2003, 28, 2512–2514. [Google Scholar] [CrossRef]
- Judge, A.C.; Bang, O.; Eggleton, B.J.; Kuhlmey, B.T.; Mägi, E.C.; Pant, R.; de Sterke, C.M. Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber. J. Opt. Soc. Am. B-Opt. Phys. 2009, 26, 2064–2071. [Google Scholar] [CrossRef]
- Wadsworth, W.J.; Joly, N.; Knight, J.C.; Birks, T.A.; Biancalana, F.; Russell, P.S.J. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. Opt. Express 2004, 12, 299–309. [Google Scholar] [CrossRef]
- Kelly, S. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett. 1992, 28, 806–808. [Google Scholar] [CrossRef]
- Agrawal, G. Nonlinear Fiber Optics, 5th ed.; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Stolen, R. Phase-matched-stimulated four-photon mixing in silica-fiber waveguides. IEEE J. Quantum Electron. 1975, 11, 100–103. [Google Scholar] [CrossRef]
- Beaud, P.; Hodel, W.; Zysset, B.; Weber, H. Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber. IEEE J. Quantum Electron. 1987, 23, 1938–1946. [Google Scholar] [CrossRef]
- Voronin, A.A.; Zheltikov, A.M. Soliton self-frequency shift decelerated by self-steepening. Opt. Lett. 2008, 33, 1723–1725. [Google Scholar] [CrossRef]
Pulse Parameter | HNLF Length | Rank of Frequency-Shifted Spectrum Separation Speed | Wavelength Redshift Efficiency | Largest Redshift Wavelength |
---|---|---|---|---|
445 fs–8.56 nm | 400 m | 2nd | 3.16 nm/W | 1643.3 nm |
(30.78 W) | ||||
445 fs–8.56 nm | 500 m | 3rd | 3.83 nm/W | 1666.9 nm |
(30.84 W) | ||||
554 fs–9.82 nm | 400 m | 4th | 4.16 nm/W | 1742.0 nm |
(45.97 W) | ||||
554 fs–9.82 nm | 500 m | 1st | 5.80 nm/W | 1775.0 nm |
(45.84 W) | ||||
318 fs–11.30 nm | 400 m | 5th | \ | 1734.2 nm |
(98.22 W) | ||||
318 fs–11.30 nm | 500 m | 6th | \ | 1689.0 nm |
(103.92 W) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Du, S.; Li, D.; Li, B.; Wang, S.; Wang, T. Wavelength Conversion Process of Intra-Pulse Stimulated Raman Scattering in Near-Zero Negative Dispersion Range. Photonics 2025, 12, 104. https://doi.org/10.3390/photonics12020104
Chen B, Du S, Li D, Li B, Wang S, Wang T. Wavelength Conversion Process of Intra-Pulse Stimulated Raman Scattering in Near-Zero Negative Dispersion Range. Photonics. 2025; 12(2):104. https://doi.org/10.3390/photonics12020104
Chicago/Turabian StyleChen, Bowen, Silun Du, Deqi Li, Baoqun Li, Sunde Wang, and Tianshu Wang. 2025. "Wavelength Conversion Process of Intra-Pulse Stimulated Raman Scattering in Near-Zero Negative Dispersion Range" Photonics 12, no. 2: 104. https://doi.org/10.3390/photonics12020104
APA StyleChen, B., Du, S., Li, D., Li, B., Wang, S., & Wang, T. (2025). Wavelength Conversion Process of Intra-Pulse Stimulated Raman Scattering in Near-Zero Negative Dispersion Range. Photonics, 12(2), 104. https://doi.org/10.3390/photonics12020104